Higher geometry and algebraic K-theory

John Lind

The Johns Hopkins University

AMS/MAA Joint Meetings – Boston 2012 AMS Special Session on Homotopy Theory (1/7/2012)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Topological *K*-theory $K^*(-)$ has a geometric interpretation of its (degree 0) cocycles.

- X: finite CW complex
- The set of equivalence classes of complex vector bundles over *X*:

[complex vector bundles/X, \oplus]

This is a monoid under Whitney sum \oplus .

• Grp(-): the Grothendieck group completion of a monoid. Then:

$$K^0(X) = \operatorname{Grp}[\operatorname{complex} \operatorname{vector} \operatorname{bundles}/X, \oplus]$$

$\mathbb{C} \rightsquigarrow R$

Goal: Find a similar description of cocycles for the cohomology theory $K(R)^*(-)$ determined by the algebraic *K*-theory of a ring spectrum *R*.

Topological *K*-theory $K^*(-)$ is the cohomology theory associated to the complex *K*-theory spectrum *K*:

- $K = K(\mathbb{C}) =$ Algebraic *K*-theory(finite rank \mathbb{C} -modules)
- $\Omega^{\infty}K = \mathbb{Z} \times BU \simeq K_0(\mathbb{C}) \times BGL_{\infty}(\mathbb{C})$

 $\mathbb{C} \rightsquigarrow$ connective ring spectrum *R*

The algebraic K-theory spectrum K(R) arises as:

- K(R) =Algebraic K-theory(finite cell R-modules)
- $\Omega^{\infty}K(\mathbf{R}) = K_0(\mathbf{R}) \times B\operatorname{GL}_{\infty}(\mathbf{R})^+$

Goal, more precisely

The desired analog of

is:

$$\mathcal{K}^{0}(X) = \operatorname{Grp}[\operatorname{complex} \operatorname{vector} \operatorname{bundles}/X, \oplus]$$

 $K(R)^{0}(X) = \operatorname{Grp}[\operatorname{bundles} \operatorname{of} R\operatorname{-modules}/X, \vee]$

 $K(R)^*(-)$: cohomology theory associated to the algebraic *K*-theory spectrum of *R*.

bundle of *R*-modules: parametrized family of *R*-module spectra.

(日) (日) (日) (日) (日) (日) (日)

A parametrized spectrum *E* over *X* is a spectrum object $\{E_n\}$ in the category of spaces over and under *X*:

$$X \xrightarrow{s} E_n \xrightarrow{p} X \qquad p \circ s = \operatorname{id}_X$$

$$\Sigma_X E_n \stackrel{\text{def}}{=} E_n \wedge_X S^1_X \stackrel{\sigma}{\longrightarrow} E_{n+1} \qquad p \circ \sigma = p, \quad \sigma \circ s = s.$$

In order to employ structured ring and module spectra, we will implicitly use orthogonal spectra and follow the homotopical foundations developed by May-Sigurdsson.

(日) (日) (日) (日) (日) (日) (日)

A map $f: X \longrightarrow Y$ of base spaces gives rise to a series of base change functors $f_{!} \dashv f^* \dashv f_*$.

Pullback along the inclusion of a point *i_x*: * → X determines the fiber of *E* over *x* ∈ X:

$$E_x \stackrel{def}{=} i_x^* E$$

 A map E → E' of spectra over X is a fiberwise weak equivalence if the induced map E_x → E'_x on fibers is a weak equivalence of spectra for all x ∈ X.

This is the appropriate notion of equivalence for parametrized spectra.

Untwistings

• If *M* is a non-parametrized spectrum, we can form the "untwisted" parametrized spectrum

 $M_X = "M \times X" = r^*M, \qquad r \colon X \longrightarrow *.$

A trivialization of *E* is a fiberwise equivalence $E \simeq M_X$ for some *M*.

• For any spectrum *E* over *X*, there are associated cohomology groups:

 $E^n(X) = \pi_{-n} r_* F_X(X, E) = \pi_0 \{ \text{global sections of } E_n \xrightarrow{p} X \}.$

More generally, *E* determines a cohomology theory on the category of spaces over *X*. When $E \simeq M_X$ is trivial,

$$E^*(X)=M^*(X).$$

Let R be a connective ring spectrum.

• An *R*-bundle *E* over *X* is a parametrized spectrum with an associative and unital action of *R* over *X*

$$R \wedge E \longrightarrow E.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Each fiber E_x is a (non-parametrized) *R*-module spectrum.

Examples

 Given a twisted coefficient system π₁X ▷ V, there is a parametrized Eilenberg MacLane spectrum HV over X. The associated cohomology is ordinary cohomology with coefficients in V:

$$HV^*(X) = H^*(X; V).$$

Let τ ∈ H³(X; Z). The τ-twisted K-theory K^{*}_τ(X) of X arises as the cohomology associated to a K-bundle E(τ) over X with fiber K:

$$E(\tau)^*(X) = K^*_{\tau}(X).$$

Given a link diagram *D*, there is an *H*ℤ-bundle *E_D* over the space *X_D* of "crossing data" of *D*. The associated cohomology is the Khovanov homology of *D*:

$$E_D^*(X_D) = KH^*(D)$$
 [Everitt-Turner]

Examples

• Applying Σ_X^∞ to the free loopspace fibration

$$\Omega X \longrightarrow LX \stackrel{ev}{\longrightarrow} X,$$

we have a parametrized spectrum $\Sigma_X^{\infty} LX$ over X with fiber $\Sigma_+^{\infty} \Omega X$.

• The Cohen-Jones ring spectrum *LM*^{-*TM*} (whose homology realizes the Chas-Sullivan string product) arises from a parametrized spectrum *ELM*^{-*TM*} over *M*:

$$LM^{-TM} = r_1 E LM^{-TM}, \quad r: M \longrightarrow *.$$

T. Kragh: Although ELM^{-TM} is non-trivially twisted, its homology is untwisted. From this he deduces a homotopy theoretic form of the nearby Lagrangian conjecture in symplectic topology.

The Main Theorem

An *R*-bundle *E* has finite rank if every fiber admits an equivalence *E_x* ≃ *R*^{∨n} for some *n* ≥ 0 (possibly varying over the components of *X*).

Main Theorem

Let R be a connective ring spectrum and let X be a finite CW complex. There is a natural isomorphism

 $K(R)^0(X) \cong Grp[virtual finite rank R-bundles/X, \lor].$

"virtual" means that we pass to homologically equivalent covers of X when considering bundle classes. This is forced by the non-trivial effect of Quillen's plus construction.

The Main Theorem: R = ku and 2-vector bundles

Let R = ku be the connective complex *K*-theory spectrum.

Main Theorem (R = ku)

 $K(ku)^0(X) \cong Grp[virtual finite rank ku-bundles/X, \lor].$

• Instead of the analogy $\mathbb{C} \rightsquigarrow ku$, we could try:

 $\mathbb{C} \rightsquigarrow (\text{Vect}_{\mathbb{C}}, \oplus, \otimes) = \text{the "ring category" of finite rank } \mathbb{C} \text{ v.s.}$

- Baas-Dundas-Richter-Rognes define the algebraic K-theory K(Vect_ℂ) and give a similar description of K(Vect_ℂ)⁰(X) in terms of bundles of Vect_ℂ-module categories over X.
- The equivalence K(ku) ≃ K(Vect_C) [BDRR, Osorno] means that ku-bundles and 2-vector bundles provide two geometric descriptions of the same cohomology theory.

The Classification Theorem

- End_{*R*}*M*: the A_{∞} -space of *R*-module maps $M \longrightarrow M$
- Aut_R $M = \operatorname{GL}_1 F_R(M, M)$: the grouplike A_∞ -space of *R*-module equivalences $M \longrightarrow M$
- For example,

$$\operatorname{GL}_n R \stackrel{def}{=} \operatorname{Aut}_R(R^{\vee n}).$$

The main theorem follows from:

The Classification Theorem

The space BAut_RM classifies R-bundles with fiber M. More precisely, there is a natural isomorphism of equivalence classes:

 $[X, BAut_R M] \cong [R$ -bundles over X with fiber M].

The Classification Theorem

The space BAut_RM classifies R-bundles with fiber M. More precisely, there is a natural isomorphism of equivalence classes:

 $[X, BAut_R M] \cong [R$ -bundles over X with fiber M].

Ando-Blumberg-Gepner take this as their starting point: using the language of quasicategories, they *define* the space $Map(X, BAut_RM)$ to be the $(\infty, 1)$ -category of *R*-bundles with fiber *M*. Their comparison with May-Sigurdsson should specialize to give a version of this result.

Thom Spectra arise as line *R*-bundles

Ando-Blumberg-Gepner-Hopkins-Rezk: Given a map

 $f: X \longrightarrow BGL_1R,$

we can form the parametrized line R-bundle Lf over X corresponding to f by the classification theorem. The R-module Thom spectrum Mf associated to f is:

$$Mf = r_! Lf \qquad r \colon X \longrightarrow *$$

The Lf cohomology of X defines the f-twisted R-theory of X:

$$Lf^*(X) = R_f^*(X).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof of the Classification Theorem

Underlying technology (originates in work of Bökstedt/EKMM):

Theorem (Blumberg, L., Schlichtkrull-Sagave)

There is a symmetric monoidal model category $(\mathcal{A}, \boxtimes, *)$ with $Ho\mathcal{A} \simeq Ho$ Top such that:

 $\{\boxtimes$ -monoids in $\mathcal{A}\} \simeq \{\mathcal{A}_{\infty}$ -spaces $\}$

{commutative \boxtimes -monoids in \mathcal{A} } \simeq { E_{∞} -spaces}

Let *G* be a grouplike \boxtimes -monoid in *A*. Using the two-sided bar construction built out of \boxtimes , we can define a "universal principal *G*-bundle"

$${\it EG}={\it B}^oxtimes(G,G,*) \longrightarrow {\it B}^oxtimes(*,G,*)={\it BG}_*$$

Pullback of *EG* along a map $f: X \longrightarrow BG$ induces:

 $[X, BG] \cong [principal G-bundles/X].$

・ロト・日本・日本・日本・日本

Proof of the Classification Theorem

When $G = Aut_R M$, this is:

 $[X, BAut_R M] \cong [principal Aut_R M-bundles/X].$

Forming the associated *R*-bundle with fiber *M*

$$Y \longmapsto M \wedge_{\Sigma^{\infty}_{+} \operatorname{Aut}_{R} M} \Sigma^{\infty}_{X} Y$$

induces a natural isomorphism:

[principal Aut_RM-bundles/X] \cong [R-bundles over X with fiber M].

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>