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Topological K-theory

Vector Bundles as Cocycles

Topological K-theory K*(—) has a geometric interpretation of
its (degree 0) cocycles.

@ X: finite CW complex

@ The set of equivalence classes of complex vector bundles
over X:
[complex vector bundles/X, @]

This is a monoid under Whitney sum @.
@ Grp(—): the Grothendieck group completion of a monoid.

Then:

K°(X) = Grp[complex vector bundles/X, @]



C~R

Goal: Find a similar description of cocycles for the cohomology
theory K(R)*(—) determined by the algebraic K-theory of a
ring spectrum R.

Topological K-theory K*(—) is the cohomology theory
associated to the complex K-theory spectrum K:
@ K = K(C) = Algebraic K-theory(finite rank C-modules)
@ QK =7 x BU ~ Ky(C) x BGL(C)

C ~~ connective ring spectrum R

The algebraic K-theory spectrum K(R) arises as:
@ K(R) = Algebraic K-theory(finite cell R-modules)
0 O®K(R) = Ky(R) x BGL«(R)"



Goal, more precisely

The desired analog of

K°(X) = Grp[complex vector bundles/X, &]

K(R)°(X) = Grp[bundles of R-modules/X, V]

K(R)*(—): cohomology theory associated to the algebraic
K-theory spectrum of R.

bundle of R-modules: parametrized family of R-module spectra.



Parametrized Spectra

A parametrized spectrum E over X is a spectrum object {Ep} in
the category of spaces over and under X:

X5 E, -2 X pos=idy

def

YxEnE Epnx Sy -2 Enyy poo=p, cos=s.

In order to employ structured ring and module spectra, we will
implicitly use orthogonal spectra and follow the homotopical
foundations developed by May-Sigurdsson.



Fiberwise Equivalences

A map f: X — Y of base spaces gives rise to a series of base
change functors fi 4 f* 4 f,.

@ Pullback along the inclusion of a point ix: x — X
determines the fiber of E over x € X:
E ¥ iE

@ Amap E — E’ of spectra over X is a fiberwise weak
equivalence if the induced map Ex — E} on fibers is a
weak equivalence of spectra for all x € X.

This is the appropriate notion of equivalence for parametrized
spectra.



Untwistings
@ If M is a non-parametrized spectrum, we can form the
“untwisted” parametrized spectrum
My ="M x X" =r*M, r: X — x.

A trivialization of E is a fiberwise equivalence E ~ My for
some M.

@ For any spectrum E over X, there are associated
cohomology groups:

E™(X) = n_nr.Fx(X, E) = mo{global sections of E, -2+ X}.

More generally, E determines a cohomology theory on the
category of spaces over X. When E ~ My is trivial,

E*(X) = M*(X).



R-bundles

Let R be a connective ring spectrum.

@ An R-bundle E over X is a parametrized spectrum with an
associative and unital action of R over X

RNE — E.

Each fiber Ex is a (non-parametrized) R-module spectrum.



Examples

@ Given a twisted coefficient system 71 X O V, there is a
parametrized Eilenberg MacLane spectrum HV over X.
The associated cohomology is ordinary cohomology with
coefficients in V:

HV*(X) = H*(X; V).

@ Let 7 € H3(X;Z). The T-twisted K-theory K*(X) of X
arises as the cohomology associated to a K-bundle E(7)
over X with fiber K:

E(7)"(X) = K2 (X).

T

@ Given a link diagram D, there is an HZ-bundle Ep over the
space Xp of “crossing data” of D. The associated
cohomology is the Khovanov homology of D:

Ep(Xp) = KH*(D) [Everitt-Turner]



Examples

@ Applying X§ to the free loopspace fibration

OX — LX 25 X,

we have a parametrized spectrum ~5°LX over X with fiber
TOOX.
@ The Cohen-Jones ring spectrum LM~ ™ (whose homology

realizes the Chas-Sullivan string product) arises from a
parametrized spectrum ELM~™ over M:

LM-™ — nELM~™ r-M—s x.

T. Kragh: Although ELM~™ is non-trivially twisted, its
homology is untwisted. From this he deduces a homotopy
theoretic form of the nearby Lagrangian conjecture in
symplectic topology.



The Main Theorem

@ An R-bundle E has finite rank if every fiber admits an
equivalence Ey ~ RV" for some n > 0 (possibly varying
over the components of X).

Main Theorem
Let R be a connective ring spectrum and let X be a finite CW
complex. There is a natural isomorphism

K(R)°(X) = Grplvirtual finite rank R-bundles/X, V.

“virtual” means that we pass to homologically equivalent covers
of X when considering bundle classes. This is forced by the
non-trivial effect of Quillen’s plus construction.



The Main Theorem: R = ku and 2-vector bundles

Let R = ku be the connective complex K-theory spectrum.
Main Theorem (R = ku)
K(ku)°(X) = Grp|virtual finite rank ku-bundles/X, V].

@ Instead of the analogy C ~~ ku, we could try:
C ~~ (Vectc, &, ®) = the “ring category” of finite rank C v.s.

@ Baas-Dundas-Richter-Rognes define the algebraic
K-theory K(Vectc) and give a similar description of
K(Vectc)?(X) in terms of bundles of Vectc-module
categories over X.

@ The equivalence K(ku) ~ K(Vectc) [BDRR, Osorno]
means that ku-bundles and 2-vector bundles provide two
geometric descriptions of the same cohomology theory.



The Classification Theorem

@ EndgM: the A.-space of R-module maps M — M
@ AutgM = GL{Fgr(M, M): the grouplike A.-space of
R-module equivalences M — M

@ For example,
GL.R % Auta(R"™).
The main theorem follows from:

The Classification Theorem

The space BAutgM classifies R-bundles with fiber M.

More precisely, there is a natural isomorphism of equivalence
classes:

[X, BAutgM] = [R-bundles over X with fiber M].




The Classification Theorem

The Classification Theorem

The space BAuigM classifies R-bundles with fiber M.
More precisely, there is a natural isomorphism of equivalence
classes:

[X, BAutgM|] = [R-bundles over X with fiber M)].

Ando-Blumberg-Gepner take this as their starting point: using
the language of quasicategories, they define the space
Map(X, BAutgM) to be the (oo, 1)-category of R-bundles with
fiber M. Their comparison with May-Sigurdsson should
specialize to give a version of this result.



Thom Spectra arise as line R-bundles

Ando-Blumberg-Gepner-Hopkins-Rezk: Given a map
f: X — BGL4R,

we can form the parametrized line R-bundle Lf over X
corresponding to f by the classification theorem. The R-module
Thom spectrum Mf associated to f is:

Mf = nLf r: X — x
The Lf cohomology of X defines the f-twisted R-theory of X:

Lf*(X) = Ri(X).



Proof of the Classification Theorem

Underlying technology (originates in work of Békstedt/EKMM):

Theorem (Blumberg, L., Schlichtkrull-Sagave)

There is a symmetric monoidal model category (A, X, x) with
HoA ~ HoTop such that:

{X-monoids in A} ~ {A.-spaces}
{commutative X-monoids in A} ~ {E.-spaces}

Let G be a grouplike X-monoid in A. Using the two-sided bar
construction built out of X, we can define a “universal principal
G-bundle”

EG = B¥(G, G, *) — B"(x, G, ) = BG.
Pullback of EG along a map f: X — BG induces:
[X, BG] = [principal G-bundles/X].



Proof of the Classification Theorem

When G = AutgM, this is:
[X, BAutgM|] = [principal AutgM-bundles/X].
Forming the associated R-bundle with fiber M
Y — M Aseauam XY
induces a natural isomorphism:

[principal AutgM-bundles/X] = [R-bundles over X with fiber M].
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