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Topological K -theory
Vector Bundles as Cocycles

Topological K -theory K ∗(−) has a geometric interpretation of
its (degree 0) cocycles.

X : finite CW complex
The set of equivalence classes of complex vector bundles
over X : [

complex vector bundles/X , ⊕
]

This is a monoid under Whitney sum ⊕.
Grp(−): the Grothendieck group completion of a monoid.

Then:

K 0(X ) = Grp
[
complex vector bundles/X , ⊕

]



C R

Goal: Find a similar description of cocycles for the cohomology
theory K (R)∗(−) determined by the algebraic K -theory of a
ring spectrum R.

Topological K -theory K ∗(−) is the cohomology theory
associated to the complex K -theory spectrum K :

K = K (C) = Algebraic K -theory(finite rank C-modules)

Ω∞K = Z× BU ' K0(C)× BGL∞(C)

C connective ring spectrum R

The algebraic K -theory spectrum K (R) arises as:
K (R) = Algebraic K -theory(finite cell R-modules)

Ω∞K (R) = K0(R)× BGL∞(R)+



Goal, more precisely

The desired analog of

K 0(X ) = Grp
[
complex vector bundles/X , ⊕

]
is:

K (R)0(X ) = Grp
[
bundles of R-modules/X , ∨

]
K (R)∗(−): cohomology theory associated to the algebraic
K -theory spectrum of R.
bundle of R-modules: parametrized family of R-module spectra.



Parametrized Spectra

A parametrized spectrum E over X is a spectrum object {En} in
the category of spaces over and under X :

X s−→ En
p−→ X p ◦ s = idX

ΣX En
def
= En ∧X S1

X
σ−→ En+1 p ◦ σ = p, σ ◦ s = s.

In order to employ structured ring and module spectra, we will
implicitly use orthogonal spectra and follow the homotopical
foundations developed by May-Sigurdsson.



Fiberwise Equivalences

A map f : X −→ Y of base spaces gives rise to a series of base
change functors f! a f ∗ a f∗.

Pullback along the inclusion of a point ix : ∗ −→ X
determines the fiber of E over x ∈ X :

Ex
def
= i∗x E

A map E −→ E ′ of spectra over X is a fiberwise weak
equivalence if the induced map Ex −→ E ′x on fibers is a
weak equivalence of spectra for all x ∈ X .

This is the appropriate notion of equivalence for parametrized
spectra.



Untwistings

If M is a non-parametrized spectrum, we can form the
“untwisted” parametrized spectrum

MX = “M × X ” = r∗M, r : X −→ ∗.

A trivialization of E is a fiberwise equivalence E ' MX for
some M.
For any spectrum E over X , there are associated
cohomology groups:

En(X ) = π−nr∗FX (X ,E) = π0{global sections of En
p−→ X}.

More generally, E determines a cohomology theory on the
category of spaces over X . When E ' MX is trivial,

E∗(X ) = M∗(X ).



R-bundles

Let R be a connective ring spectrum.
An R-bundle E over X is a parametrized spectrum with an
associative and unital action of R over X

R ∧ E −→ E .

Each fiber Ex is a (non-parametrized) R-module spectrum.



Examples

Given a twisted coefficient system π1X � V , there is a
parametrized Eilenberg MacLane spectrum HV over X .
The associated cohomology is ordinary cohomology with
coefficients in V :

HV ∗(X ) = H∗(X ; V ).

Let τ ∈ H3(X ;Z). The τ -twisted K -theory K ∗τ (X ) of X
arises as the cohomology associated to a K -bundle E(τ)
over X with fiber K :

E(τ)∗(X ) = K ∗τ (X ).

Given a link diagram D, there is an HZ-bundle ED over the
space XD of “crossing data” of D. The associated
cohomology is the Khovanov homology of D:

E∗D(XD) = KH∗(D) [Everitt-Turner]



Examples

Applying Σ∞X to the free loopspace fibration

ΩX −→ LX ev−→ X ,

we have a parametrized spectrum Σ∞X LX over X with fiber
Σ∞+ ΩX .
The Cohen-Jones ring spectrum LM−TM (whose homology
realizes the Chas-Sullivan string product) arises from a
parametrized spectrum ELM−TM over M:

LM−TM = r!ELM−TM , r : M −→ ∗.

T. Kragh: Although ELM−TM is non-trivially twisted, its
homology is untwisted. From this he deduces a homotopy
theoretic form of the nearby Lagrangian conjecture in
symplectic topology.



The Main Theorem

An R-bundle E has finite rank if every fiber admits an
equivalence Ex ' R∨n for some n ≥ 0 (possibly varying
over the components of X ).

Main Theorem
Let R be a connective ring spectrum and let X be a finite CW
complex. There is a natural isomorphism

K (R)0(X ) ∼= Grp[virtual finite rank R-bundles/X , ∨].

“virtual” means that we pass to homologically equivalent covers
of X when considering bundle classes. This is forced by the
non-trivial effect of Quillen’s plus construction.



The Main Theorem: R = ku and 2-vector bundles

Let R = ku be the connective complex K -theory spectrum.

Main Theorem (R = ku)

K (ku)0(X ) ∼= Grp[virtual finite rank ku-bundles/X , ∨].

Instead of the analogy C ku, we could try:

C (VectC,⊕,⊗) = the “ring category” of finite rank C v.s.

Baas-Dundas-Richter-Rognes define the algebraic
K -theory K (VectC) and give a similar description of
K (VectC)0(X ) in terms of bundles of VectC-module
categories over X .
The equivalence K (ku) ' K (VectC) [BDRR, Osorno]
means that ku-bundles and 2-vector bundles provide two
geometric descriptions of the same cohomology theory.



The Classification Theorem

EndRM: the A∞-space of R-module maps M −→ M
AutRM = GL1FR(M,M): the grouplike A∞-space of
R-module equivalences M −→ M
For example,

GLnR def
= AutR(R∨n).

The main theorem follows from:

The Classification Theorem
The space BAutRM classifies R-bundles with fiber M.
More precisely, there is a natural isomorphism of equivalence
classes:

[X ,BAutRM] ∼= [R-bundles over X with fiber M].



The Classification Theorem

The Classification Theorem
The space BAutRM classifies R-bundles with fiber M.
More precisely, there is a natural isomorphism of equivalence
classes:

[X ,BAutRM] ∼= [R-bundles over X with fiber M].

Ando-Blumberg-Gepner take this as their starting point: using
the language of quasicategories, they define the space
Map(X ,BAutRM) to be the (∞,1)-category of R-bundles with
fiber M. Their comparison with May-Sigurdsson should
specialize to give a version of this result.



Thom Spectra arise as line R-bundles

Ando-Blumberg-Gepner-Hopkins-Rezk: Given a map

f : X −→ BGL1R,

we can form the parametrized line R-bundle Lf over X
corresponding to f by the classification theorem. The R-module
Thom spectrum Mf associated to f is:

Mf = r!Lf r : X −→ ∗

The Lf cohomology of X defines the f -twisted R-theory of X :

Lf ∗(X ) = R∗f (X ).



Proof of the Classification Theorem

Underlying technology (originates in work of Bökstedt/EKMM):

Theorem (Blumberg, L., Schlichtkrull-Sagave)

There is a symmetric monoidal model category (A,�, ∗) with
HoA ' HoTop such that:

{�-monoids in A} ' {A∞-spaces}
{commutative �-monoids in A} ' {E∞-spaces}

Let G be a grouplike �-monoid in A. Using the two-sided bar
construction built out of �, we can define a “universal principal
G-bundle”

EG = B�(G,G, ∗) −→ B�(∗,G, ∗) = BG.

Pullback of EG along a map f : X −→ BG induces:

[X ,BG] ∼= [principal G-bundles/X ].



Proof of the Classification Theorem

When G = AutRM, this is:

[X ,BAutRM] ∼= [principal AutRM-bundles/X ].

Forming the associated R-bundle with fiber M

Y 7−→ M ∧Σ∞
+ AutRM Σ∞X Y

induces a natural isomorphism:

[principal AutRM-bundles/X ] ∼= [R-bundles over X with fiber M].
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