NOTES FROM A TALK ON PARAMETRIZED THOM SPECTRA AND ORIENTATION THEORY

JOHN A. LIND

An *n*-dimensional vector bundle $\xi \colon V \longrightarrow X$ gives rise to a spherical fibration $S^{\xi} \colon S^{V} \longrightarrow X$, and thus to a local coefficient system

$$\begin{split} \widetilde{H}^*(S_{\bullet}^V) \colon \Pi_1 X &\longrightarrow \operatorname{grAb} \\ p \in X &\longmapsto \widetilde{H}^*(S_p^V) \end{split}$$

An orientation of ξ is an isomorphism of local coefficient systems $\widetilde{H}^*(S^V_{\bullet}) \cong \mathbf{Z}[n]$, where $\mathbf{Z}[n]$ is the constant system given by the integers in degree n and 0 elsewhere. The Serre spectral sequence associated with $\widetilde{H}^*(S^V_{\bullet})$ takes the form

$$H^p(X, \widetilde{H}^q(S^V_{\bullet})) \Longrightarrow H^{p+q}(S^V, X) \cong \widetilde{H}^{p+q}(X^{\xi})$$

where, $X^{\xi} = S^V/X$ is the Thom space of ξ .

An orientation of ξ "untwists" this spectral sequence so that it converges to $H^{p+q-n}(X)$. The resulting isomorphism of E_{∞} terms is the Thom isomorphism in integral cohomology.

Let $\gamma(n)$ be the tautological n-plane bundle over BO(n). Then the Thom space $BO(n)^{\gamma(n)}$ is the n-th space of the Thom spectrum MO representing unoriented corbodism theory. More generally, given a compatible system of maps $f_n \colon X_n \longrightarrow BO(n)$, we may define a spectrum Mf whose n-th space is $X_n^{f_n^*\gamma(n)}$. Using this method, we can construct MSO, MSp, MSpin, MString, MU, etc. If $\xi - \eta$ is a virtual vector, bundle, we choose ξ' such that $\eta \oplus \xi'$ is the trivial bundle ϵ_N of rank N, and then define:

$$X^{\xi-\eta} = \Sigma^N X^{\xi \oplus \xi'}.$$

Alternatively, we could pass to the colimit of classifying spaces. The space $BO = \operatorname{colim}_n BO(n)$ classifies rank zero virtual vector bundles, and we define the Thom spectrum associated to a map $f: X \longrightarrow BO$ to be the Thom spectrum Mf associated with the system $f_n: f^{-1}BO(n) \longrightarrow BO(n)$ of maps into the finite skeleta.

In fact, the construction of Thom spectra only depends on the associated spherical fibration of a vector bundle. Let $h\mathrm{Aut}(S^n)$ be the monoid of based homotopy equivalences $S^n \longrightarrow S^n$. Then the classifying space $Bh\mathrm{Aut}(S^n)$ classifies fibrations with fiber S^n . The J-homomorphism $J\colon BO(n) \longrightarrow Bh\mathrm{Aut}(S^n)$ is induced by one-point compactification. We may think of the space $\Omega^\infty S = \mathrm{colim}_n \Omega^n S^n$ of stable self-maps of spheres as the space $\mathrm{Hom}_S(S,S)$ of S-module endomorphisms of the sphere spectrum. The subspace $\mathrm{colim}_n h\mathrm{Aut}(S^n) \subset \Omega^\infty S$ corresponds to the space GL_1S of S-module automorphisms of S.

Suppose we are given a (not necessarily commutative) S-algebra R with unit map $\eta\colon S\longrightarrow R$. There is an A_{∞} space of units $\mathrm{GL}_1R\subset\Omega^{\infty}R$ corresponding to the subspace of $\mathrm{Hom}_R(R,R)$ consisting of R-module automorphisms. Composing the J-homomorphism with the map of units induced by η , we have the diagram

$$BO \xrightarrow{J} \operatorname{colim}_n Bh\operatorname{Aut}(S^n) = B\operatorname{GL}_1 S \longrightarrow B\operatorname{GL}_1 R$$

We will now extend the construction of Thom spectra to accept maps $f: X \longrightarrow BGL_1R$ as input.

To this end, we define a universal principal GL_1R -bundle $EGL_1R \longrightarrow BGL_1R$ in terms of a two-sided bar construction

$$B(*, \operatorname{GL}_1 R, \operatorname{GL}_1 R) \longrightarrow B(*, \operatorname{GL}_1 R, *).$$

In order to do this truthfully, one needs to make a choice of model for A_{∞} spaces as monoids in some category with a symmetric monoidal structure \boxtimes . One then forms the bar construction in the usual way but with respect to \boxtimes instead of the cartesian product. See [5,7,9] for a few different approaches to the required technology.

1

Writing B for $B\operatorname{GL}_1R$, we may form the parametrized suspension spectrum $\Sigma_B^{\infty}E\operatorname{GL}_1R$, whose fibers are of the form $\Sigma_+^{\infty}E\operatorname{GL}_1R$. In particular, this is a right $\Sigma_+^{\infty}\operatorname{GL}_1R$ -module. The spectrum R is a left $\Sigma_+^{\infty}\operatorname{GL}_1R$ -module. In anology with the vector bundle associated to the universal principal O(n)-bundle, we define the universal rank 1 R-module bundle (a.k.a. line R-bundle) to be the parametrized R-module

$$\Sigma_B^{\infty} E \operatorname{GL}_1 R \wedge_{\Sigma_{\perp}^{\infty} \operatorname{GL}_1 R} R.$$

Definition. Let $f: X \longrightarrow B\operatorname{GL}_1R$ be a map of spaces. The parametrized Thom spectrum associated to f is the base change of the universal rank 1 R-module bundle along the map f:

$$M_X f = f^* (\Sigma_B^{\infty} E \operatorname{GL}_1 R \wedge_{\Sigma_+^{\infty} \operatorname{GL}_1 R} R)$$

$$\cong \Sigma_X^{\infty} f^* E \operatorname{GL}_1 R \wedge_{\Sigma_+^{\infty} \operatorname{GL}_1 R} R.$$

 $M_X f$ is a rank 1 R-bundle over X, i.e. a parametrized R-module spectrum over X whose fibers are equivalent to R. The total Thom spectrum associated to f is the R-module $Mf = r_! M_X f$. Here, $r_!$ is the left adjoint to the functor r^* from spectra to parametrized spectra that gives the "untwisted" parametrized spectrum. It is the base change functor associated to the map $r: X \longrightarrow *$.

By the definition of $M_X f$, we have the description:

$$Mf = r_! f^*(\Sigma_B^{\infty} E \operatorname{GL}_1 R \wedge_{\Sigma_+^{\infty} \operatorname{GL}_1 R} R) \cong \Sigma_+^{\infty} f^* E \operatorname{GL}_1 R \wedge_{\Sigma_+^{\infty} \operatorname{GL}_1 R} R.$$

This is the definition for Mf described in [2]. When S = R, this agrees with the old definition of the Thom spectrum associated to f. If f factors through a map $g: X \longrightarrow B\operatorname{GL}_1S$, then we have an isomorphism of parametrized Thom spectra $M_X f \cong M_X g \wedge R$.

The following theorem justifies the use of the word "universal" above:

Theorem. [8] The association

$$(f: X \longrightarrow B\operatorname{GL}_1 R) \mapsto M_X f$$

induces a bijection between the set of homotopy classes of maps $[X, BGL_1R]$ and the set of fiberwise weak equivalence classes of parametrized rank one R-module spectra over X.

Suppose that E is a parametrized spectrum with fiber M. We say that E is trivializable if there is a weak homotopy equivalence of parametrized spectra $E \simeq r^*M$. It follows from the theorem that the Thom spectrum $M_X f$ is trivializable if and only if the the map $f: X \longrightarrow B\operatorname{GL}_1 R$ null-homotopic.

From the quasicategory point of view, there is a model for $B\operatorname{GL}_1R$ that suggests we take this theorem as a definition. In [1], a parametrized rank 1 R-module spectrum over X is defined to be a map $f: X \longrightarrow B\operatorname{GL}_1R$.

Theorem (Mahowald-Ray). Let $\xi \colon Y \longrightarrow X$ be a spherical fibration over X, and let $f(Y) \longrightarrow B\operatorname{GL}_1 S \longrightarrow B\operatorname{GL}_1 R$ be the map induced by the classifying map for Y. The spherical fibration Y is R-orientable if and only if the parametrized Thom spectrum $M_X f(Y)$ is trivializable.

Proof. A Thom class $\mu \in R^n(X^{\xi})$ may be represented by a map $\mu \colon r_!Y = X^{\xi} \longrightarrow \Sigma^n R$ with adjoint $\widetilde{\mu} \colon Y \longrightarrow r^*\Sigma^n R = R \wedge_X S_X^n$. Composing with the multiplication of R gives a map

$$\psi \colon M_X f = R \wedge_X Y \xrightarrow{\operatorname{id} \wedge \widetilde{\mu}} R \wedge R \wedge_X S_X^n \longrightarrow R \wedge_X S_X^n.$$

For each point $x \in X$, the class $\mu_x \in R^n(Y_x) \cong R^n(S^n)$ is a unit if and only if the restriction ψ_x of ψ to the map of fibers over x is a weak equivalence of R-modules. This proves the theorem.

When ξ is R-oriented, we may deduce the Thom isomorphisms

$$R_*(X_+) \cong R_{*+n}(X^{\xi})$$
 $R^*(X_+) \cong R^{*+n}(X^{\xi})$

from the equivalences of spectra

$$R \wedge X^{\xi} \simeq R \wedge \Sigma^{n} X_{+}$$
 $F(X^{\xi}, R) \simeq F(\Sigma^{n} X_{+}, R)$

obtained by applying r_1 to the equivalence of parametrized spectra given in the theorem.

Example. Let $R = H\mathbf{Z}$. Then $GL_1H\mathbf{Z} = \mathbf{Z}/2$, and the composite

$$w_2 : BO \xrightarrow{J} BGL_1S \longrightarrow BGL_1H\mathbf{Z} = K(\mathbf{Z}/2, 1)$$

represents the first Stiefel-Whitney class w_2 . Let ξ be a vector bundle, and let $f: X \longrightarrow BO$ be the map induced by the map representing ξ . The vector bundle ξ is $H\mathbf{Z}$ -orientable if and only if the Thom spectrum $M_X f = X^{\xi} \wedge H\mathbf{Z}$ is trivializable. The latter condition is equivalent to the vanishing of the first Stiefel Whitney class $w_1(\xi) = [w_1 \circ f] \in H^1(X; \mathbf{Z}/2)$.

Example. Let R = K be complex K-theory. Then $\Omega^{\infty}K = \mathbf{Z} \times BU$, and the space of units of K decomposes as a product

$$\mathrm{GL}_1K = \mathbf{Z}/2 \times BU(1) \times BSU_{\otimes} = \mathbf{Z}/2 \times K(\mathbf{Z},2) \times BSU_{\otimes}.$$

If we pass to the connected cover SO of O, the map

$$SO \xrightarrow{J} \operatorname{GL}_1 S \longrightarrow \operatorname{GL}_1 K$$

factors through the connected cover $\mathrm{SL}_1K = K(\mathbf{Z},2) \times BSU_{\otimes}$ of GL_1K . At the level of classifying spaces, the map

$$w_2 \colon BSO \stackrel{J}{\longrightarrow} B\operatorname{GL}_1S \longrightarrow B\operatorname{GL}_1K = K(\mathbf{Z}/2,1) \times K(\mathbf{Z},3) \times BBSU_{\otimes} \stackrel{\pi}{\longrightarrow} K(\mathbf{Z}/2,1)$$

representing the first Stiefel-Whitney class is nullhomotopic. Let Spin(n) be the universal cover of SO(n), realized as a Lie group, and let

$$Spin^{c}(n) = Spin(n) \times_{\mathbf{Z}/2} U(1)$$

be the associated principal U(1)-bundle over SO(n). Then $Spin^c(n)$ is also a compact Lie group, and the colimit of the classifying spaces $BSpin^c = \operatorname{colim}_n BSpin^c(n)$ is the fiber of the composite

$$BSO \xrightarrow{w_2} K(\mathbf{Z}/2, 2) \xrightarrow{\beta} K(\mathbf{Z}, 3) = BU(1)$$

of the second Stiefel-Whitney class and the Bockstein β . Therefore we have the following commutative diagram.

Since the map from $BSpin^c$ to BGL_1K is nullhomotopic, it follows that a real vector bundle ξ is K-orientable if and only if it has a reduction of its structural group to $Spin^c$, i.e. if $w_1(\xi) = 0$ and $\beta w_2(\xi) = 0$. This is the result of Atiyah-Bott-Shapiro [3], who constructed Thom isomorphisms in K-theory for $Spin^c$ -bundles.

Let $f: BSpin^c \longrightarrow B\operatorname{GL}_1K$ be the composite in the diagram. Then f is nullhomotopic, so the parametrized Thom spectrum $M_{BSpin^c}f$ is trivializable:

$$M_{BSpin^c} f \simeq S_{BSpin^c} \wedge K.$$

Applying r_1 to the trivialization yields an equivalence of ring spectra (the Thom isomorphism):

$$MSpin^c \wedge K \simeq BSpin^c_+ \wedge K.$$

In modern language, the Atiyah-Bott-Shapiro orientation is the map of ring spectra $MSpin^c \longrightarrow K$ given by the composite

$$MSpin^c \longrightarrow MSpin^c \wedge K \simeq BSpin^c_+ \wedge K \longrightarrow K$$

of the unit for K theory with the projection of $BSpin^c$ to a point. See [6] for a direct construction of the map of ring spectra. We can think about the orientation map geometrically. The homotopy of $MSpin^c$ is the ring of bordism classes of manifolds equipped with $Spin^c$ -structures on their tangent bundles, and the homotopy of the complex K-theory spectrum is given by equivalence classes of complex Hilbert spaces with an action of the Clifford algebra $Cliff(\mathbf{C}^n)$ and an odd skew-adjoint $Cliff(\mathbf{C}^n)$ -linear Fredholm operator. The Atiyah-Bott-Sapiro orientation sends such a manifold M to the Hilbert space of L^2 sections of the spinor

bundle, equipped with a $Cliff(\mathbb{C}^n)$ -action, along with the Fredholm operator given by the Dirac operator constructed from the connection associated to a choice of metric on M.

In general, if A is a ring spectrum and R is an A-algebra, we define an R-orientation of the Thom spectrum Mf associated to $f: X \longrightarrow B\operatorname{GL}_1A$ to be a choice of lift \overline{f} in the following diagram:

In other words, \overline{f} is a choice of trivialization of the rank one R-bundle associated to f. A choice of orientation is equivalent to a choice of a map of A-algebra spectra $Mf \longrightarrow R$ that can be thought of as the "projection to the fiber." This is the approach to orientations developed by Ando, Blumberg, Gepner, Hopkins, and Rezk [2,4] in order to calculate the space of tmf-orientations of MString.

References

- [1] M. Ando, A.J. Blumberg, and D. Gepner, Twists of K-theory and tmf.
- [2] M. Ando, A.J. Blumberg, D. Gepner, M.J. Hopkins, and C. Rezk, Units of ring spectra and Thom spectra, arXiv:math.AT/0810.4535.
- [3] M.F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. 1, 3-38.
- [4] M. Ando, M.J. Hopkins, and C. Rezk, Multiplicative Orientations of KO-theory and of the spectrum of topological modular forms, preprint.
- [5] A.J. Blumberg, R.L. Cohen, and C. Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14 (2010), no. 2, 1165-1242.
- [6] M. Joachim, *Higher coherences for equivariant K-theory*, Structured Ring Spectra, London Math. Soc. Lecture Note Ser. **315** (2004), 87-114.
- [7] J. Lind, Diagram spaces, diagram spectra, and spectra of units, to appear in Alg. Geom. Top.
- [8] _____, Bundles of spectra and algebraic K-theory, in preparation.
- [9] C. Schlichtkrull and S. Sagave, Diagram spaces and symmetric spectra, arXiv:1103.2764.