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An n-dimensional vector bundle ξ : V −→ X gives rise to a spherical fibration Sξ : SV −→ X, and thus
to a local coefficient system

H̃∗(SV• ) : Π1X −→ grAb

p ∈ X 7−→ H̃∗(SVp )

An orientation of ξ is an isomorphism of local coefficient systems H̃∗(SV• ) ∼= Z[n], where Z[n] is the constant
system given by the integers in degree n and 0 elsewhere. The Serre spectral sequence associated with
H̃∗(SV• ) takes the form

Hp(X, H̃q(SV• )) =⇒ Hp+q(SV , X) ∼= H̃p+q(Xξ)
where, Xξ = SV /X is the Thom space of ξ.

An orientation of ξ “untwists” this spectral sequence so that it converges to Hp+q−n(X). The resulting
isomorphism of E∞ terms is the Thom isomorphism in integral cohomology.

Let γ(n) be the tautological n-plane bundle over BO(n). Then the Thom space BO(n)γ(n) is the n-
th space of the Thom spectrum MO representing unoriented corbodism theory. More generally, given a
compatible system of maps fn : Xn −→ BO(n), we may define a spectrum Mf whose n-th space is Xf∗nγ(n)

n .
Using this method, we can construct MSO,MSp,MSpin,MString,MU, etc. If ξ − η is a virtual vector,
bundle, we choose ξ′ such that η ⊕ ξ′ is the trivial bundle εN of rank N , and then define:

Xξ−η = ΣNXξ⊕ξ′ .

Alternatively, we could pass to the colimit of classifying spaces. The space BO = colimnBO(n) classifies
rank zero virtual vector bundles, and we define the Thom spectrum associated to a map f : X −→ BO to
be the Thom spectrum Mf associated with the system fn : f−1BO(n) −→ BO(n) of maps into the finite
skeleta.

In fact, the construction of Thom spectra only depends on the associated spherical fibration of a vector
bundle. Let hAut(Sn) be the monoid of based homotopy equivalences Sn −→ Sn. Then the classifying
space BhAut(Sn) classifies fibrations with fiber Sn. The J-homomorphism J : BO(n) −→ BhAut(Sn) is
induced by one-point compactification. We may think of the space Ω∞S = colimn ΩnSn of stable self-maps
of spheres as the space HomS(S, S) of S-module endomorphisms of the sphere spectrum. The subspace
colimn hAut(Sn) ⊂ Ω∞S corresponds to the space GL1S of S-module automorphisms of S.

Suppose we are given a (not necessarily commutative) S-algebra R with unit map η : S −→ R. There is
an A∞ space of units GL1R ⊂ Ω∞R corresponding to the subspace of HomR(R,R) consisting of R-module
automorphisms. Composing the J-homomorphism with the map of units induced by η, we have the diagram

BO
J−→ colimnBhAut(Sn) = BGL1S −→ BGL1R

We will now extend the construction of Thom spectra to accept maps f : X −→ BGL1R as input.
To this end, we define a universal principal GL1R-bundle EGL1R −→ BGL1R in terms of a two-sided

bar construction
B(∗,GL1R,GL1R) −→ B(∗,GL1R, ∗).

In order to do this truthfully, one needs to make a choice of model for A∞ spaces as monoids in some
category with a symmetric monoidal structure �. One then forms the bar construction in the usual way but
with respect to � instead of the cartesian product. See [5,7,9] for a few different approaches to the required
technology.
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Writing B for BGL1R, we may form the parametrized suspension spectrum Σ∞B EGL1R, whose fibers are
of the form Σ∞+ EGL1R. In particular, this is a right Σ∞+ GL1R-module. The spectrum R is a left Σ∞+ GL1R-
module. In anology with the vector bundle associated to the universal principal O(n)-bundle, we define the
universal rank 1 R-module bundle (a.k.a. line R-bundle) to be the parametrized R-module

Σ∞B EGL1R ∧Σ∞+ GL1R R.

Definition. Let f : X −→ BGL1R be a map of spaces. The parametrized Thom spectrum associated to f
is the base change of the universal rank 1 R-module bundle along the map f :

MXf = f∗(Σ∞B EGL1R ∧Σ∞+ GL1R R)
∼= Σ∞X f

∗EGL1R ∧Σ∞+ GL1R R.

MXf is a rank 1 R-bundle over X, i.e. a parametrized R-module spectrum over X whose fibers are equivalent
to R. The total Thom spectrum associated to f is the R-moduleMf = r!MXf . Here, r! is the left adjoint
to the functor r∗ from spectra to parametrized spectra that gives the “untwisted” parametrized spectrum.
It is the base change functor associated to the map r : X −→ ∗.

By the definition of MXf , we have the description:

Mf = r!f
∗(Σ∞B EGL1R ∧Σ∞+ GL1R R) ∼= Σ∞+ f

∗EGL1R ∧Σ∞+ GL1R R.

This is the definition for Mf described in [2]. When S = R, this agrees with the old definition of the Thom
spectrum associated to f . If f factors through a map g : X −→ BGL1S, then we have an isomorphism of
parametrized Thom spectra MXf ∼= MXg ∧R.

The following theorem justifies the use of the word “universal” above:

Theorem. [8] The association
(f : X −→ BGL1R) 7→MXf

induces a bijection between the set of homotopy classes of maps [X,BGL1R] and the set of fiberwise weak
equivalence classes of parametrized rank one R-module spectra over X.

Suppose that E is a parametrized spectrum with fiber M . We say that E is trivializable if there is a
weak homotopy equivalence of parametrized spectra E ' r∗M . It follows from the theorem that the Thom
spectrum MXf is trivializable if and only if the the map f : X −→ BGL1R null-homotopic.

From the quasicategory point of view, there is a model for BGL1R that suggests we take this theorem as a
definition. In [1], a parametrized rank 1 R-module spectrum over X is defined to be a map f : X −→ BGL1R.

Theorem (Mahowald-Ray). Let ξ : Y −→ X be a spherical fibration over X, and let f(Y ) −→ BGL1S −→
BGL1R be the map induced by the classifying map for Y . The spherical fibration Y is R-orientable if and
only if the parametrized Thom spectrum MXf(Y ) is trivializable.

Proof. A Thom class µ ∈ Rn(Xξ) may be represented by a map µ : r!Y = Xξ −→ ΣnR with adjoint
µ̃ : Y −→ r∗ΣnR = R ∧X SnX . Composing with the multiplication of R gives a map

ψ : MXf = R ∧X Y
id∧eµ−−−→ R ∧R ∧X SnX −→ R ∧X SnX .

For each point x ∈ X, the class µx ∈ Rn(Yx) ∼= Rn(Sn) is a unit if and only if the restriction ψx of ψ to the
map of fibers over x is a weak equivalence of R-modules. This proves the theorem. �

When ξ is R-oriented, we may deduce the Thom isomorphisms

R∗(X+) ∼= R∗+n(Xξ) R∗(X+) ∼= R∗+n(Xξ)

from the equivalences of spectra

R ∧Xξ ' R ∧ ΣnX+ F (Xξ, R) ' F (ΣnX+, R)

obtained by applying r! to the equivalence of parametrized spectra given in the theorem.
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Example. Let R = HZ. Then GL1HZ = Z/2, and the composite

w2 : BO J−→ BGL1S −→ BGL1HZ = K(Z/2, 1)

represents the first Stiefel-Whitney class w2. Let ξ be a vector bundle, and let f : X −→ BO be the map
induced by the map representing ξ. The vector bundle ξ is HZ-orientable if and only if the Thom spectrum
MXf = Xξ ∧ HZ is trivializable. The latter condition is equivalent to the vanishing of the first Stiefel
Whitney class w1(ξ) = [w1 ◦ f ] ∈ H1(X; Z/2).

Example. Let R = K be complex K-theory. Then Ω∞K = Z×BU , and the space of units of K decomposes
as a product

GL1K = Z/2×BU(1)×BSU⊗ = Z/2×K(Z, 2)×BSU⊗.
If we pass to the connected cover SO of O, the map

SO
J−→ GL1S −→ GL1K

factors through the connected cover SL1K = K(Z, 2)× BSU⊗ of GL1K. At the level of classifying spaces,
the map

w2 : BSO J−→ BGL1S −→ BGL1K = K(Z/2, 1)×K(Z, 3)×BBSU⊗
π−→ K(Z/2, 1)

representing the first Stiefel-Whitney class is nullhomotopic. Let Spin(n) be the universal cover of SO(n),
realized as a Lie group, and let

Spinc(n) = Spin(n)×Z/2 U(1)
be the associated principal U(1)-bundle over SO(n). Then Spinc(n) is also a compact Lie group, and the
colimit of the classifying spaces BSpinc = colimnBSpin

c(n) is the fiber of the composite

BSO
w2−−→ K(Z/2, 2)

β−→ K(Z, 3) = BU(1)

of the second Stiefel-Whitney class and the Bockstein β. Therefore we have the following commutative
diagram.

BSpinc

��

// EGL1K ' ∗

��
BSO

J //

βw2 **VVVVVVVVVVVVVVVVVVVVVV BGL1S // BGL1K

π

��
K(Z, 3)

Since the map from BSpinc to BGL1K is nullhomotopic, it follows that a real vector bundle ξ is K-orientable
if and only if it has a reduction of its structural group to Spinc, i.e. if w1(ξ) = 0 and βw2(ξ) = 0. This is
the result of Atiyah-Bott-Shapiro [3], who constructed Thom isomorphisms in K-theory for Spinc-bundles.

Let f : BSpinc −→ BGL1K be the composite in the diagram. Then f is nullhomotopic, so the parametrized
Thom spectrum MBSpincf is trivializable:

MBSpincf ' SBSpinc ∧K.
Applying r! to the trivialization yields an equivalence of ring spectra (the Thom isomorphism):

MSpinc ∧K ' BSpinc+ ∧K.
In modern language, the Atiyah-Bott-Shapiro orientation is the map of ring spectra MSpinc −→ K given
by the composite

MSpinc −→MSpinc ∧K ' BSpinc+ ∧K −→ K

of the unit for K theory with the projection of BSpinc to a point. See [6] for a direct construction of the
map of ring spectra. We can think about the orientation map geometrically. The homotopy of MSpinc is
the ring of bordism classes of manifolds equipped with Spinc-structures on their tangent bundles, and the
homotopy of the complex K-theory spectrum is given by equivalence classes of complex Hilbert spaces with
an action of the Clifford algebra Cliff(Cn) and an odd skew-adjoint Cliff(Cn)-linear Fredholm operator. The
Atiyah-Bott-Sapiro orientation sends such a manifold M to the Hilbert space of L2 sections of the spinor
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bundle, equipped with a Cliff(Cn)-action, along with the Fredholm operator given by the Dirac operator
constructed from the connection associated to a choice of metric on M .

In general, if A is a ring spectrum and R is an A-algebra, we define an R-orientation of the Thom spectrum
Mf associated to f : X −→ BGL1A to be a choice of lift f in the following diagram:

P //

��

EGL1R

��
X

f
44jjjjjjjjjj

f
// BGL1A // BGL1R

In other words, f is a choice of trivialization of the rank one R-bundle associated to f . A choice of orientation
is equivalent to a choice of a map of A-algebra spectra Mf −→ R that can be thought of as the “projection
to the fiber.” This is the approach to orientations developed by Ando, Blumberg, Gepner, Hopkins, and
Rezk [2, 4] in order to calculate the space of tmf -orientations of MString.
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