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An n-dimensional vector bundle £: V — X gives rise to a spherical fibration S¢: SV — X, and thus
to a local coefficient system

H*(SY): I, X — grAb
peXr— ﬁ*(SX)

An orientation of ¢ is an isomorphism of local coefficient systems H*(SY) 2 Z[n], where Z[n] is the constant
system given by the integers in degree n and 0 elsewhere. The Serre spectral sequence associated with
H*(SY) takes the form

HP(X,HY(SY)) = HP*(SY, X) = HP+1(X¢)
where, X¢ = SV /X is the Thom space of .

An orientation of £ “untwists” this spectral sequence so that it converges to HPT9~"(X). The resulting
isomorphism of E., terms is the Thom isomorphism in integral cohomology.

Let v(n) be the tautological n-plane bundle over BO(n). Then the Thom space BO(n)Y™ is the n-
th space of the Thom spectrum MO representing unoriented corbodism theory. More generally, given a
compatible system of maps f,,: X,, — BO(n), we may define a spectrum M f whose n-th space is sz:ﬂ(n).
Using this method, we can construct M.SO, M Sp, M Spin, M String, MU, etc. If £ — 7 is a virtual vector,
bundle, we choose £’ such that n @ £ is the trivial bundle ey of rank N, and then define:

X6 — v €D

Alternatively, we could pass to the colimit of classifying spaces. The space BO = colim,, BO(n) classifies
rank zero virtual vector bundles, and we define the Thom spectrum associated to a map f: X — BO to
be the Thom spectrum M f associated with the system f,,: f~!BO(n) — BO(n) of maps into the finite
skeleta.

In fact, the construction of Thom spectra only depends on the associated spherical fibration of a vector
bundle. Let AAut(S™) be the monoid of based homotopy equivalences S™ — S™. Then the classifying
space BhAut(S™) classifies fibrations with fiber S™. The J-homomorphism J: BO(n) — BhAut(S™) is
induced by one-point compactification. We may think of the space 2°°S = colim,, " S™ of stable self-maps
of spheres as the space Homg(S,S) of S-module endomorphisms of the sphere spectrum. The subspace
colim,, hAut(S™) C QS corresponds to the space GL1S of S-module automorphisms of S.

Suppose we are given a (not necessarily commutative) S-algebra R with unit map 7n: S — R. There is
an A, space of units GL1 R C Q°°R corresponding to the subspace of Hompg (R, R) consisting of R-module
automorphisms. Composing the J-homomorphism with the map of units induced by 7, we have the diagram

BO - colim,, BhAut(S") = BGL,S — BGL R

We will now extend the construction of Thom spectra to accept maps f: X — BGL; R as input.

To this end, we define a universal principal GL; R-bundle FGL;R — BGL; R in terms of a two-sided
bar construction

B(*7 GLlR, GLlR) — B(*, GLlR, *)
In order to do this truthfully, one needs to make a choice of model for A,, spaces as monoids in some
category with a symmetric monoidal structure . One then forms the bar construction in the usual way but
with respect to X instead of the cartesian product. See [5,7,9] for a few different approaches to the required
technology.
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Writing B for BGL; R, we may form the parametrized suspension spectrum X% EGL; R, whose fibers are
of the form ¥X° FGL; R. In particular, this is a right 3$°GL; R-module. The spectrum R is a left ¥5°GL; R-
module. In anology with the vector bundle associated to the universal principal O(n)-bundle, we define the
universal rank 1 R-module bundle (a.k.a. line R-bundle) to be the parametrized R-module

Z?EGLlR /\ZTGLlR R.

Definition. Let f: X — BGL; R be a map of spaces. The parametrized Thom spectrum associated to f
is the base change of the universal rank 1 R-module bundle along the map f:
Mx f = f*(EOBOEGLlR /\ETGMR R)
= Z%Of*EGLlR /\EfGIAR R.
Mx f is arank 1 R-bundle over X, i.e. a parametrized R-module spectrum over X whose fibers are equivalent
to R. The total Thom spectrum associated to f is the R-moduleM f = rMx f. Here, 7 is the left adjoint

to the functor r* from spectra to parametrized spectra that gives the “untwisted” parametrized spectrum.
It is the base change functor associated to the map r: X — x.

By the definition of My f, we have the description:
Mf = T!f*(EOBOEGLlR /\EfquR R) = Eiof*EGL1R /\ETGLlR R.

This is the definition for M f described in [2]. When S = R, this agrees with the old definition of the Thom
spectrum associated to f. If f factors through a map g: X — BGL;.S, then we have an isomorphism of
parametrized Thom spectra Mx f = Mxg A R.

The following theorem justifies the use of the word “universal” above:

Theorem. [8] The association

induces a bijection between the set of homotopy classes of maps [X, BGL1R| and the set of fiberwise weak
equivalence classes of parametrized rank one R-module spectra over X.

Suppose that E is a parametrized spectrum with fiber M. We say that F is trivializable if there is a
weak homotopy equivalence of parametrized spectra E ~ r*M. It follows from the theorem that the Thom
spectrum My f is trivializable if and only if the the map f: X — BGL; R null-homotopic.

From the quasicategory point of view, there is a model for BGL; R that suggests we take this theorem as a
definition. In [1], a parametrized rank 1 R-module spectrum over X is defined to be amap f: X — BGL; R.

Theorem (Mahowald-Ray). Let £: Y — X be a spherical fibration over X, and let f(Y) — BGL;S —
BGL R be the map induced by the classifying map for Y. The spherical fibration Y is R-orientable if and
only if the parametrized Thom spectrum Mx f(Y') is trivializable.

Proof. A Thom class u € R"(X¢) may be represented by a map u: nY = X¢ — X"R with adjoint
Y — r*¥"R = R Ax S%. Composing with the multiplication of R gives a map
id Ap

@b:MXf:R/\XY—>R/\R/\XS§ —>RAXS§}.

For each point z € X, the class u, € R"(Y,) = R™(S™) is a unit if and only if the restriction 1, of ¥ to the
map of fibers over x is a weak equivalence of R-modules. This proves the theorem. |

When € is R-oriented, we may deduce the Thom isomorphisms
R(X4) 2 Rean(XS)  RY(Xy) = R(XY)
from the equivalences of spectra
RAXS~RAY"X, F(X%R)~F(X"X,R)

obtained by applying 7 to the equivalence of parametrized spectra given in the theorem.
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Example. Let R = HZ. Then GL; HZ = Z/2, and the composite

ws: BO -1 BGL,S — BGLHZ = K(Z/2,1)

represents the first Stiefel-Whitney class ws. Let & be a vector bundle, and let f: X — BO be the map
induced by the map representing £. The vector bundle £ is HZ-orientable if and only if the Thom spectrum
Mxf = X&¢ A HZ is trivializable. The latter condition is equivalent to the vanishing of the first Stiefel
Whitney class wy () = [wy o f] € HY(X;Z/2).

Example. Let R = K be complex K-theory. Then Q>° K = Z x BU, and the space of units of K decomposes
as a product
GL1K =Z/2x BU(1) x BSUg =7/2 x K(Z,2) x BSUg.
If we pass to the connected cover SO of O, the map
SO -1 GL1S — GLIK
factors through the connected cover SL; K = K(Z,2) x BSUg of GL1 K. At the level of classifying spaces,
the map
wy: BSO -, BGLyS — BGL.K = K(Z/2,1) x K(Z,3) x BBSUgy — K(Z/2,1)

representing the first Stiefel-Whitney class is nullhomotopic. Let Spin(n) be the universal cover of SO(n),
realized as a Lie group, and let

Spin®(n) = Spin(n) xz/2 U(1)
be the associated principal U(1)-bundle over SO(n). Then Spin®(n) is also a compact Lie group, and the
colimit of the classifying spaces BSpin® = colim,, BSpin®(n) is the fiber of the composite

BSO 2 K(z/2,2) 2 K(Z,3) = BU(1)

of the second Stiefel-Whitney class and the Bockstein 3. Therefore we have the following commutative
diagram.

BSpin© EGL1 K ~ %
BSO —2> BGL,S BGL, K
x iﬂ'
K(Z,3)

Since the map from BSpin© to BGL; K is nullhomotopic, it follows that a real vector bundle ¢ is K-orientable
if and only if it has a reduction of its structural group to Spin®, i.e. if wy(§) = 0 and fwy(§) = 0. This is
the result of Atiyah-Bott-Shapiro [3], who constructed Thom isomorphisms in K-theory for Spin®-bundles.

Let f: BSpin® — BGL; K be the composite in the diagram. Then f is nullhomotopic, so the parametrized
Thom spectrum Mpgpine f is trivializable:

MBSpin“f = SBSpinC ANK.
Applying 7 to the trivialization yields an equivalence of ring spectra (the Thom isomorphism):
MSpin® N K ~ BSpint N K.

In modern language, the Atiyah-Bott-Shapiro orientation is the map of ring spectra M Spin® — K given
by the composite
M Spin® — MSpin® AN K ~ BSping NK — K
of the unit for K theory with the projection of BSpin® to a point. See [6] for a direct construction of the
map of ring spectra. We can think about the orientation map geometrically. The homotopy of M Spin¢ is
the ring of bordism classes of manifolds equipped with Spin¢-structures on their tangent bundles, and the
homotopy of the complex K-theory spectrum is given by equivalence classes of complex Hilbert spaces with
an action of the Clifford algebra Cliff(C™) and an odd skew-adjoint Cliff (C™)-linear Fredholm operator. The
Atiyah-Bott-Sapiro orientation sends such a manifold M to the Hilbert space of L? sections of the spinor
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bundle, equipped with a Cliff(C™)-action, along with the Fredholm operator given by the Dirac operator
constructed from the connection associated to a choice of metric on M.

In general, if A is a ring spectrum and R is an A-algebra, we define an R-orientation of the Thom spectrum
M f associated to f: X — BGL; A to be a choice of lift f in the following diagram:

P ECGL.R
|
X % BGI A ——> BGL,R

In other words, f is a choice of trivialization of the rank one R-bundle associated to f. A choice of orientation
is equivalent to a choice of a map of A-algebra spectra M f — R that can be thought of as the “projection
to the fiber.” This is the approach to orientations developed by Ando, Blumberg, Gepner, Hopkins, and
Rezk [2,4] in order to calculate the space of tm f-orientations of M String.
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