
NOTES ON PARAMETRIZED SPECTRA

JOHN A. LIND

These notes are meant to be an easy but honest account of the foundations of
parametrized stable homotopy theory. I use the book [1] by May-Sigurdsson as the
primary reference.

1. parametrized spaces and base-change functors

Let B be a topological space. We write Top/B for the category of spaces (X, p) =
(p : X −→ B) over B, and we write TopB for the category of ex-spaces, by which

we mean spaces (X, p, s) = (B
s−→ X

p−→ B) over B equipped with a section:
p◦ s = idB . We write (X, p)+ = (X tB, pt idB , iB) for the ex-space obtained from
a parametrized space (X, p) by adjoinging a disjoint section. Ex-spaces are the
parametrized analog of based-spaces and the functor (X, p) 7−→ (X, p)+ is formally
analogous to the disjoint basepoint functor X 7−→ X+.

Let f : A −→ B be a map of spaces. Associated to f are base-change functors

f! : TopA −→ TopB

f∗ : TopB −→ TopA that satisfy f! a f∗ a f∗
f∗ : TopA −→ TopB

i.e. f! is left adjoint to f∗ and f∗ is left adjoint to f∗. The pushforward f!(X, p, s)
of an ex-space X along f is defined by the pushout

A
f //

s

��

B

��
X // f!X.

In other words, the space f!X is obtained by glueing a copy of B to X along the
section s(A) ⊂ X. This defines the section B −→ f!X. The projection f!X −→ B
is induced by the projection map of X. Notice that when the section is its own
connected component, the pushforward has a very simple description:

f!(X, p)+ = (X, f ◦ p)+.

The pullback f∗(X, p, s) of an ex-space X along f is defined by the pullback square

f∗X

��

// X

p

��
A

f // B

with section A −→ f∗X induced by the section of X. The right adjoint f∗ of f∗ is
a little harder to construct. We must first construct the internal hom MapB(−,−),
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or parametrized mapping space, of a pair of parametrized spaces. This functor
satisfies the adjunction

Top/B(X ×B Y, Z) ∼= Top/B(X,MapB(Y,Z))

and makes Top/B into a cartesian closed category. To construct MapB(−,−), we

first consider the partial map classifier Ỹ of a space Y . As a set, Ỹ = Y t {ω}.
We endow Ỹ with the topology whose closed sets are Ỹ and the closed sets of Y .

This definition is arranged so that a map f : K −→ Ỹ defined on a closed subset

K ⊂ X is equivalent to the specification of a map f̃ : X −→ Ỹ (points outside of
K are sent to ω). We then define the mapping ex-space MapB(X,Y ) from (X, p)
to (Y, q) to be the pullback

MapB(X,Y ) //

��

Map(X, Ỹ )

Map(X,q̃)

��
B

λ // Map(X, B̃)

where

λ(b) : x 7−→

{
b if p(x) = b,

ω otherwise.

In other words, λ is adjoint to the map X ×B −→ B̃ classifying graph(p)
π2−→ B.

With the parametrized mapping space MapB(−,−) defined, we may now define
f∗(X, p, s) to be the pullback

f∗X //

��

MapB(A,X)

MapB(A,p)

��
B // MapB(A,A)

where the bottom map is adjoint to idA : B ×B A ∼= A −→ A. Unfortunately,

the construction of Ỹ , and hence of MapB(X,Y ), takes us outside of the category
of compactly generated spaces (= weak Hausdorff + k-spaces). If we start with
k-spaces, then MapB(X,Y ) is again a k-space. Therefore, to have a theory of
parametrized spaces for which there is always a right adjoint f∗ to the pullback
functor f∗, one solution is to remove the weak Hausdorff condition and work only
with k-spaces. This is the approach followed in May-Sigurdsson’s book, and so by
“Top” we mean the category of k-spaces.

We now consider important examples of constructions given by base-change func-
tors. We will always write r : B −→ ? for the projection from B to a point. The
base-change functors associated to r are given by collapsing the section

r!(X, p, s) = X/s(B), so in particular r!(X, p)+ = X+,

by the product space over B

r∗X = (X ×B, π2, (∗X , idB)),

and by the global sections functor

r∗(X, p, s) = {f : B −→ X | p ◦ f = idB} = ΓBX.
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Let ib : ∗ −→ B denote the inclusion of a given point b ∈ B. Then pullback along
ib specifies the fiber of a parametrized space over b:

i∗bX = Xb.

Since i∗b is both a left and a right adjoint, this means that the fiber functor commutes
with all colimits and all limits.

Suppose that (X, p, s) and (Y, q, t). are ex-spaces over B. The fiberwise smash-
product X ∧B Y is defined by the pushout:

X ∨B Y
(idX ,t)∨(s,idY )//

p∨q
��

X ×B Y

��
B // X ∧B Y

The definition is arranged so that (X ∧B Y )b = Xb ∧ Yb. The category TopB of ex-
spaces is symmetric monoidal under ∧B with unit object the parametrized 0-sphere
r∗S0 = S0

B = (B, idB)+.

2. Model category structures

We say that a map X −→ Y in Top/B or TopB is a weak equivalence if it induces
a weak homotopy equivalence π∗X −→ π∗Y of the underlying spaces. Notice that
by the five-lemma, this is equivalent to the condition that for every b ∈ B the

induced map of fibers Xfib
b −→ Y fib

b of a fibrant approximation X
'−→ Xfib � B

over B is a weak homotopy equivalence.
Recall that the Quillen model category structure on Top has weak equivalences

the weak homotopy equivalences, fibrations the Serre fibrations, and cofibrations
the relative I-cell complexes, with generating cofibrations and acyclic cofibrations

I = {i : Sq−1 −→ Dq} and J = {j : Dq −→ Dq × I}.
In other words, a cofibration is an inclusion determined by a series of attachments
of cells built by pushout along the maps i. Since Top/B and TopB are comma
categories, they carry induced model category structures with weak equivalences,
fibrations, and cofibrations determined by the forgetful functor to Top.

May-Sigurdsson do not use the comma model category structures. Their reasons
are quite subtle, and I will discuss them below. The alternative model structure
(which they call the qf -model structure) on Top/B has weak equivalences deter-
mined by the forgetful functor to Top, and has generating cofibrations given by the
set IB of maps over B of the form

Sq−1 i //

""

Dq

~~
B

where the inclusion i is required to look sufficiently like a projection in a collar
neighborhood of ∂Dq so that it is a fiberwise cofibration, meaning a map that
satisfies the homotopy extension property in the category Top/B. If this condition
were ommited, and we took all maps i : Sq−1 −→ Dq with arbitrary projection to B,
the resulting set would generate the comma model structure on Top/B. The set JB
of generating acyclic cofibrations is similarly defined in terms of a condition on the
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map from the disk to the base space. By putting restrictions on the cofibrations in
the mode structure, there are necessarily more fibrations. The fibrations in the qf -
model structure are more general than Serre fibrations, but are still quasifibrations,
so they admit a long exact sequence in homotopy groups.

There is an induced qf -model structure on the category TopB of ex-spaces de-
temined by the forgetful functor TopB −→ Top/B. The generating cofibrations
I+
B and acyclic cofibrations J+

B are built from those in IB and JB by adjoining a
disjoint section.

3. Parametrized spectra

A spectrum X over B is an orthogonal spectrum object in the pointed category
TopB . Thus X consists of an O(n)-equivariant ex-space (X(n), p(n), s(n)) for each
n ≥ 0, along with (O(m)×O(n))-equivariant spectrum structure maps

σm,n : SmB ∧B X(n) −→ X(m+ n) in TopB

where SmB = (B × Sm, π1, (idB , ∗)) is the product ex-space over B with fiber the
sphere Sm, and ∧B denotes the fiberwise smash product. A map of spectra over B
is a map X(n) −→ Y (n) of ex-spaces for each n respecting the structure maps and
orthogonal group actions. We write SpB for the category of spectra over B. The
definition of a parametrized spectrum is arranged so that for each b ∈ B, the fibers
X(n)b assemble into a non-parametrized spectrum Xb, called the fiber spectrum.
We write Σ∞B Y = Σ∞B (Y, p, s) for the fiberwise suspension spectrum of an ex-space
(Y, p, s), defined by (Σ∞B Y )(n) = SnB ∧B Y , and write Σ∞B (Y, p)+ for the fiberwise
suspension spectrum of the ex-space (Y t B, p t idB , idB) obtained from (Y, p) by
adjoining a disjoint section.

We use orthogonal spectra so that there is a symmetric monoidal fiberwise smash
product −∧B − of spectra over B. Explicitly, this is the coequalizer of the actions
of the sphere spectrum SB = Σ∞+ (B, id)+ on X and Y

X ∧OB S ∧OB Y
// // X ∧OB Y // X ∧B Y,

where ∧OB denotes the fiberwise smash product of orthogonal sequences:

(X ∧OB Y )(k) =
∨

m+n=k

O(k)+ ∧O(m)×O(n) (X(m) ∧B Y (n)).

This is the same definition as for orthogonal spectra, but performed fiberwise over
B. The unit object for the fiberwise smash product ∧B of spectra is the sphere
spectrum SB = r∗S = Σ∞+ (B, id)+ over B.

May-Sigurdsson construct a stable model structure on the category of parametrized
spectra over B. The weak equivalences are the stable equivalences. These are maps
X −→ Y of spectra over B which induce a weak homotopy equivalence of fiber
spectra after taking a level-wise approximation by fibrations:

X
'−→ Y ⇐⇒ π∗X

level−fib
b

∼=−→ π∗Y
level−fib
b ∀b ∈ B.

The set IΣ
B of generating cofibrations is obtained by applying Σ∞±nB to the generat-

ing cofibrations in I+
B for all n, and similarly for the set of generating acyclic cofi-

brations JΣ
B . The fibrations are then determined by the weak equivalences and cofi-

brations, and are fiberwise Ω-spectra whose projections to B are all qf -fibrations.
It is in the verification of the model category axioms for SpB that May-Sigurdsson
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must resort to the qf -model structure on TopB . since the generating qf -cofibrations
are fiberwise Hurewicz cofibrations, one has enough control over them to prove the
glueing lemma. The verification that a relative JΣ

B -cell complex in SpB is in fact a
stable equivalence requires this usage of fiberwise Hurewicz cofibrations. There are
further compatibilities between the model structure and cofiber sequences built out
of fiberwise cones that are needed. See [1, §5.3–5.6] for a detailed explanation of
the benefits obtained from building up from the qf -model structure. We will write
ho SpB for the homotopy category of spectra over B associated to the stable model
category of spectra over B.

The base-change functors on ex-spaces extend to give stable base-change functors

f! : SpA −→ SpB

f∗ : SpB −→ SpA that satisfy f! a f∗ a f∗.
f∗ : SpA −→ SpB

They are defined levelwise. In order to derive homotopically meaningful statements,
we should work with the derived versions of the base-change functors, by apply-
ing an appropriate cofibrant or fibrant approximation before applying the functor.
From now on, we will implicitly mean the derived base-change functor when we
write f!, f

∗ or f∗. Notice that the derived fiber functors

i∗b(−) = (−)b : ho SpB −→ ho Sp

jointly detect the stable equivalences of parametrized spectra.
There is some subtletly with the definition of the base change functor f∗. This

stems from the fact that (f!, f
∗) is a Quillen adjunction but (f∗, f∗) is not Quillen,

and in fact cannot be made Quillen simlutaneously with (f!, f
∗) for any model

structure on SpB . (see Counterexample 0.0.1 in [1]).

Example. Recall that r : B −→ ∗ is the projection map to a point. The base-
change functor r! : SpB −→ Sp has the effect of collapsing all sections to a single
basepoint. In particular, the base change r!Σ

∞
B (Y, p)+ of a fiberwise suspension

spectrum to a point is canonically equivalent to the suspension spectrum Σ∞Y+.

Let (Y, p) be a space over B and suppose given a map f : A −→ B. Then the pull-
back f∗Σ∞B (Y, p)+ is canonically equivalent to the suspension spectrum Σ∞A (Z, q)+

of the homotopy pullback Z of Y along f . We may explicitly describe the space Z
by replacing p by a homotopy equivalent fibration p′ : Y ′ −→ B and then taking
the pullback:

Z //

q

��

Y ′

p′

��
A

f // B.

Example. Let ∆: B −→ B×B denote the diagonal map. Then there is a canonical
equivalence

∆∗∆!SB ∼= ∆∗Σ∞B×B(B,∆)+
∼= Σ∞B (LB, e0)+,

where LB = Map(S1, B) is the free loop space of B and e0 is the evaluation of a
loop at the basepoint 0 ∈ S1. Under this identification, the unit η : SB −→ ∆∗∆!SB
of the adjunction (∆!,∆

∗) is the map of suspension spectra over B induced by the
inclusion of constant loops c : B −→ LB.
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Example. There is a projection formula

f!(f
∗X ∧A Y ) ∼= X ∧B f!Y

relating the pushforward and pullback functors along f : A −→ B.

Example. Suppose given a commutative diagram of maps of topological spaces

A
f //

i

��

B

j

��
C

g // D

and a spectrum X over C. Then there is a natural map α : f!i
∗X −→ j∗g!X of

spectra over B defined by the composite

α : f!i
∗ η−→ f!i

∗g∗g!
∼= f!f

∗j∗g!
ε−→ j∗g!

of the unit and counit for the adjunctions of base change functors induced by f and
g. When the square is a homotopy pullback square, then the transformation α is
an equivalence of derived functors, often called the Beck-Chevalley isomorphism.

Example. A parametrized spectrum E over B gives rise to a twisted homology
and twisted cohomology theory on Top/B. The values of the theory are defined by
the pushforward functor and the global sections functor:

E∗(X) = π∗r!(Σ
∞
BX+ ∧B E) E∗(X) = π−∗r∗FB(Σ∞BX+, E).

Here FB(−,−) is the internal hom in parametrized spectra, defined so that FB(X,−)
is right adjoint to −∧BX. There is a version of Brown representability in this con-
text which states that any twisted cohomology theory on spaces over B satisfying
a version of the Eilenberg-Steenrod axioms is of this form.

The discrepancy between r! and r∗ in the definition of homology and cohomology
means that fiberwise duality, as discussed in the next section, does not induce
a duality between twisted homology and cohomology. The right framework for
Poincaré duality in parametrized homology and cohomology is a more general type
of bicategorical duality [1, §19].

4. Fiberwise duality

We say that X ∈ ho SpB is fiberwise dualizable if it is a dualizable object of
the symmetric monoidal category (SpB ,∧BSB). In other words, there exists a
parametrized spectrum Y = DX ∈ ho SpB and coevaluation and evaluation mor-
phisms

coev : SB −→ X ∧B Y eval : Y ∧B X −→ SB

such that

X ∼= SB ∧B X
coev∧1−−−−→ X ∧B Y ∧B X

1∧eval−−−−→ X ∧B SB ∼= X

Y ∼= Y ∧B SB
1∧coev−−−−→ Y ∧B X ∧B Y

eval∧1−−−−→ SB ∧B Y ∼= Y

are homotopic to the identity maps on X and Y .
The pullback functor f∗ is strong monoidal, so it follows that the derived fiber

spectra (Xb, Yb) form a dual pair in Sp. In fact, a parametrized spectrum X is
fiberwise dualizable if and only of the canonical map

FB(X,SB) ∧B X −→ FB(X,X)
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is a stable equivalence over B. But since the derived fiber functors jointly detect
stable equivalences, this is equivalent to the condition that

F (Xb, S) ∧X −→ F (Xb, Xb)

is a stable equivalence of spectra for every b ∈ B. Thus we see that X is fiberwise
dualizable if and only if each Xb is Spanier-Whitehead dualizable as a spectrum,
i.e. is a finite cell spectrum.

Example. Suppose that f : E −→ B is a fibration and each fiber Eb is a homotopy
finitely dominated space, i.e. is a retract of an up-to-homotopy finite CW complex.
Then the fiberwise suspension spectrum Σ∞B (E, f)+ has fiber

(Σ∞B (E, f)+)b ∼= Σ∞+ Eb,

a finite cell spectrum. Therefore, f!SE = Σ∞B (E, f)+ is fiberwise dualizable over B.

Example. As a special case of the previous example, suppose that f : E −→ B is
a fiber bundle of smooth manifolds with compact fiber M . Then we can describe
the dual of f!SE explicitly. Let TM = ker(TE −→ f∗TB) be the vertical tangent
bundle. As a virtual vector bundle on E, we may write TM = TE − f∗TB. Write
STME for the sphere bundle over E given by fiberwise one point compactification of

TM . Write S−TME for its inverse under ∧E . This is the spherical fibration over E
associated to the virtual vector space −TM .

I claim that (f!SE , f!S
−TM
E ) is a dual pair in ho SpB . This is fiberwise Atiyah

duality for M , parametrized over B. We can construct the coevaluation and evalu-
ation morphisms explicitly. Let j : E −→ B×Rn be an embedding that agrees with
f on the first factor. Then there is a tubular neighborhood of E in B ×Rn which

is homeomorphic to the sphere bundle p : S
ν(j)
E −→ E associated to the normal

bundle of the embedding j. The fiberwise Pontjagin-Thom collapse map

PT: SnB = B × Sn −→ S
ν(j)
E /B = f!S

ν(j)
E

takes values in the Thom space obtained by collapsing the section of S
ν(j)
E at ∞ to

a copy of B. This is implemented by the base-change functor f!. We compose the
fiberwise Pontrjagin Thom collapse map with the Thom diagonal v 7→ p(v) ∧ v:

SnB
PT−→ f!S

ν(j)
E

∆−→ E+ ∧B f!S
ν(j)
E .

Since ν(j) ⊕ TE ∼= f∗TB ⊕ εn, there is an equality of virtual vector bundles
ν(j) − εn = f∗Tb − TE = −TM . Apply fiberwise desuspension to the composite
of the fiberwise Pontrjagin-Thom collapse map and the Thom diagonal gives the
coevaluation morphism for the duality:

coev : SB
Σ−n

B PT
−−−−−→ f!S

−TM
E

Σ−n
B ∆
−−−−→ f!SE ∧B f!S

−TM
E .

To construct the evaluation morphism, consider the composite of embeddings

E
∆−→ E ×B E

j×1−−→ (B ×Rn)×B E ∼= E ×Rn.

Since the composite is isotopic to the zero-section, the normal bundle ν((j×1)◦∆)
is homeomorphic to the trivial bundle εn on E. The fiberwise Pontrjagin-Thom
collapse map for ∆ relative to the ambient space E ×Rn takes the form

PT: (f × f)!S
ν(j×1)
E×BE

−→ f!S
ν((j × 1) ◦∆)E ∼= f!S

n
E .
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Desuspending by the fiberwise n-sphere, and composing with the projection to B
defines the evaluation morphism

eval : f!S
−TM
E ∧B f!SE ∼= (f × f)!S

ν(j×1)
E×BE

Σ−n
B PT
−−−−−→ f!SE = Σ∞B (E, f)+

f−→ SB

I have borrowed a few ideas and notation from Rezk’s nice treatment of Atiyah
duality in the non-parametrized setting [2].
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