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Twisted cohomology theories

A twisted cohomology theory is a functorial algebraic invariant
of topological spaces that behaves similarly to a cohomology
theory, but depends on additional local information. Examples:

@ Ordinary cohomology H*(X; .A) with coefficients in a local
coefficient system A

@ Twisted K-theory KZ(X) with coefficients in a
U(1)-gerbe E.

A U(1)-gerbe E is a higher categorical version of a line bundle
and determines a class [E] € H3(X; Z).

Kg(X) = Grothendieck[E-twisted vector bundles]

Another point of view: E is a principal PU(* )-bundle over X for
a fixed Hilbert space H.

KE(X) = W,*F(E XPU(H) Fred(?—[))



Twisted cohomology theories are represented by
parametrized spectra

R: aring spectrum

X: atopological space

Twisted R theory is a cohomology theory R’(—) defined on the
category (Spaces)/X that depends on a choice of local
twisting 7 on X.

The twisted theory R:(—) is represented by a parametrized
spectrum R, over X:

7: X — BGLR ~ R, =RAscaLrEFE(T)

E(7) is the “principal GL{R-bundle” over X classified by 7.

In the case of twisted K-theory KZ(—), the U(1)-gerbe
[E] = [E(7)] € H3(X;Z) is classified by a map

7: X — K(Z,3) ~ BPU(H) ~ BCPZ’ C BGL1K.



Goal: a framework for equivariantly twisted
cohomology theories

G: compact Lie group
X: a G-space
R: G-ring spectrum

My goal is to set up a framework to define and work with
G-equivariant twisted R-theory.
This parametrized cohomology theory should:
@ be represented by a parametrized G-spectrum R, over X
@ agree with R when X = x
@ depend on an equivariant twist classified by a G-map:

7: X — BgGL{R

@ recover previous definitions (for example, of twisted
equivariant K-theory).



Monoidal presentations of A,, G-spaces

Zg: the category with
@ objects: G inner product spaces V
@ morphisms: linear isometries V. — W

An Zs-space is a G-equivariant functor X: Zg — G-spaces.
There is a symmetric monoidal product X on Zg-spaces such
that the functor

X — hocolimy X(V)

induces Quillen equivalences:

(Zg-spaces) ~ (G-spaces)
(X-monoids) ~ (A G-spaces)



Monoidal presentations of A,, G-spaces

Zg: the category with
@ objects: G inner product spaces V
@ morphisms: linear isometries V. — W

An Zs-space is a G-equivariant functor X: Zg — G-spaces.
There is a symmetric monoidal product X on Zg-spaces such
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| apologize for being evil, but for this talk | will treat these
equivalences as if they were equalities.



Isotropy subgroups of 1 x G

Working towards a definition of BgGL1 R, our general setup is:
M: a grouplike A, G-space (think I = GL1R)
N x G: the product A, G-space determined by G © I

I acts on X through G-maps <INl x G acts on X

I acts freely on X when the isotropy subgroups of 1 x G are of

the form:
Hy, ={(a(h),h) eNx G| he H}

for some subgroup H < G and 1-cocycle a: H — T1.

The monoidal model for the A, space I allows us to make
sense of the cocycle condition

a(g) - 9a(h) = a(gh).



The construction of Egl1 — Bgll

O: the orbit category of (I x G)-spaces of the form (1 x G)/H,
Define

E-N = B(x,O.R) = hocoli N x G)/H,
G (x,O,R) [(m%c)zgﬁeo( x G)/Ha

Then EglN — Bgl = EgM /N is the universal “principal M
G-bundle". More generally, we can define

E;I'I — B;I'I
for any family F of isotropy “subgroups”:

F C{H, <N x G}



Definition: Equivariant twists of a G ring spectrum R

An equivariant twist for R-theory is a G-map
T X — BGGL1 R.

By pulling back the universal bundle EgGL1R, there is an
associated GL{R-bundle E(7) — X.

Definition
The 7-twisted R-cohomology of X is given by the homotopy

classes of sections of the parametrized G-spectrum R-
classified by 7:

RY(X) = (R Ax>aL,r ZX E(7))

R:(—) is an RO(G)-graded cohomology theory defined on
G-spaces/ X.




The G-homotopy type of BoGL1R

Let H < G. If «: H— I is the 1-cocycle with associated
H, < M x @G, then define

NAe = “fr e N |7 a(h) ~ a(h) - "7}"

NH is an A, space with (non-equivariant) delooping B(M"=).
Letting « run over equivalence classes of 1-cocycles, we get:

BaM"= [ B(O™)
[HleH (H:)

Work in progress: understand the C,-homotopy type of

Bc,GL1KR.



Twisted equivariant K-theory

Returning to full generality, the (non-equivariant) principal
M-bundle
EG XaG E;I'I — EG XaG B;I'I

is classified by a map EG x g BxI1 — BI1, which induces
[X, B;FI] — [EG XaG X, Bﬂ]
By naturality for the inclusion PU(H) ~ CP>* C GLK:

[X, BrPU(H)]® —— [EG x g X, BPU(H)]

| |

[X, BrGL1K]¢ — = [EG x g X, BGLK]

We will use this diagram to compare Borel twists with
equivariant twists.



Use the family of isotropy subgroups
F={H, <PUH) x G|a: H— PU(H) is stable}
H: the S'-central extension determined by o
« is stable if the image of
index: Fred(H)® — R.(H) = R(H)

is a subgroup containing all representations of H on which S
acts by multiplication.
The top map is an isomorphism [Luck-Uribe]:

o

[X, BrPU(H)]¢ [EG xg X,BPU(H)] > 7

| |

f(r) € [X, BFGL;K]® [EG % X, BGL{K]




Twisted equivariant K-theory vs. equivariantly twisted
Kg-theory

Starting with
[7] € H3(EG xg X;Z) = [EG xg X, BPU(H)],

we get an equivariant twist f(7): X — BrGLK.

For K the complex K-theory spectrum with trivial G-action, our
definition of f(7)-twisted K-theory agrees with that of
Atiyah-Segal, Hopkins-Freed-Teleman, Lupercio-Uribe:

K2 (X) = Kiipy(X)

Q: what about twists of fully equivariant K-theory K5?
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