
DUALITY SEMINAR

These are notes from a seminar at Regensburg organized by John Lind and Oriol Raventós-
Morera in the spring of 2015. Our aim was to understand the paper “Duality in algebra and
topology” by Dwer-Greenlees-Iyengar.

1. Context and smallness conditions

Our setting is the category ModS of modules over the sphere spectrum S. DGI choose to realize
this as the category of symmetric spectra equipped with the Hovey-Shipley-Smith model structure,
but we will work independent of a choice of model as much as possible. The ∞-categorically
minded may prefer to work in that context, with the warning that it is their responsibility to make
meaningful statements. The category ModS is closed symmetric monoidal under the smash product
⊗ = ⊗S and the function spectrum functor Hom(−,−) = HomS(−,−). Often, we implicitly state
conclusions in the stable homotopy category ho ModS , but as in the article, we will not be too precise
in moving between ModS and ho ModS . In particular, whenever we use a functor, we will mean
the derived version of that functor, and will not be explicit about cofibrant/fibrant approximation,
etc.

A (commutative) S-algebra is a (commutative) monoid in ModS under ⊗. If R is an S-algebra, we
may form the smash product M⊗RN of a right R-module M and a left R-module N . The category
of R-modules is enriched in ModS via the function spectrum of R-module maps HomR(−,−). Note
that unless R is commutative, M ⊗R N and HomR(M,N) need not be R-modules.

We have the Eilenberg-MacLane embedding R 7−→ HR of discrete rings into S-algebras. We
have an equivalence D(R) ' hoH ModR of the derived category of R-modules with the homotopy
category of HR-modules, realized by the functor taking a chain complex of R-modules C to the
HR-module HC with n-th space

HCn = N−1τ≥0ΣnC,

where N−1 is the inverse of the Dold-Kan correspondence N : sAb → Ch+. From now on we
will follow the algebraic notation and write D(R) for the homotopy category of modules over an
S-algebra R.

We will say that an S-module is small if it is compact as an object of the triangulated category
ho ModS , i.e. if the functor Hom(X,−) commutes with coproducts. X is small if and only if it is
dualizable as an object of the closed symmetric monoidal category ho ModS , i.e. if the natural map

Hom(X,S)⊗ Y → Hom(X,Y )

is an equivalence for all S-modules Y . This in turn is equivalent to the condition that X is a finite
spectrum.

We say that a subcategory of a triangulated category is a thick subcategory if it is closed under
equivalences, cofiber sequences, and retracts. If it is additionally closed under coproducts (and thus
all colimits) we say that it is a localizing subcategory.

Definition 1.1. Let R be an S-algebra, and let A and B be R-modules. The R-module A is finitely
built from B if A is contained in the smallest thick subcategory containing B. We say that A is
built from B if k is contained in the smallest localizing subcategory, containing B.

Lemma 1.2. An R-module k is small (=compact) in ModR if and only if k is finitely built from
R.
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Proof. It is actually a general fact that in any compactly generated triangulated category, the com-
pact objects are precisely the objects of the smallest thick subcategory containing the generators,
and our proof can be adapted to work in this generality. Notice that the R-modules X satisfying
the condition

HomR(X,qYi) ' qHomR(X,Yi)

form a thick subcategory. Since R itself is small, it follows that the smallest thick subcategory
containing R is contained in the subcategory of small R-modules. This gives one implication. For
the other, assume that k is small. We may write k as a colimit of R-modules finitely built from R

k ' colim kα,

say by taking a cofibrant approximation as a cell R-module and forming the colimit of the finite
subcomplexes. (More generally, the fact that ModR is compactly generated means that the smallest
localizing subcategory containing the generator R is all of ModR, i.e. every R-module is built from
R.) Since k is small, we have equivalences

HomR(k, k) ' HomR(k, colim kα) ' colim HomR(k, kα).

Therefore the identity map idk factors through some stage of the colimit kα, so k is a retract of a
finitely built R-module. Hence k itself is finitely built from R. �

We now fix an S-algebra R, an R-module k, and define E = EndR(k).

Definition 1.3. A map f : U −→ V of R-modules is a k-equivalence if HomR(k, f) is an equiv-
alence. An R-module S is k-cellular(= k-torsion) if HomR(X, f) is an equivalence for all k-
equivalences f .

Lemma 1.4. A k-equivalence f : X −→ Y of k-cellular R-modules is an equivalence.

Proof. The equivalence

HomR(Y, f) : HomR(Y,X)
'−→ HomR(Y, Y )

furnishes a map g : Y −→ X such that f ◦ g ' idY . The image of g ◦ f under the equivalence

HomR(X, f) : HomR(X,X)
'−→ HomR(X,Y )

is f ◦ g ◦ f ' f , from which we deduce that g ◦ f ' idX . �

Theorem 1.5. For each R-module X, we may functorially construct a k-equivalence CellkX → X
where CellkX is a k-cellular R-module. We refer to CellkX as a k-cellular approximation to X.

Let CellkD(R) denote the full subcategory of D(R) spanned by the k-cellular objects. The
theorem gives the right adjoint of the adunction

CellkD(R)
inclusion // D(R)
Cellk(−)

oo

which exhibits the k-cellular R-modules as a right Bousfield localization (= colocalization = cellu-
larization) of the homotopy category of R-modules.

Proposition 1.6. An R-module X is k-cellular if and only if X is built from k.

The proof is an explicit construction of CellkX via the small object argument that shows that it
is built from k.

The R-module k is also a (left) E = EndR(k)-module, and the actions commute. Given an
Eop-module X, the smash product X ⊗E k inherits an R-module structure from k.
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Definition 1.7. An R-module M is effectively constructible from k if the action map

ϕ : HomR(k,M)⊗E k −→M

is an equivalence.

Notice that since HomR(k,M) is an E-module, it is E-cellular as an E-module. Thus it is built from
E as an E-module, so HomR(k,M)⊗E k is built from k as an R-module. Hence the domain of ϕ is
always k-cellular. It follows that

ϕ is a k-equivalence⇐⇒ ϕ is a k-cellular approximation

⇐⇒ CellkM is effectively constructible.

Theorem 1.8. Assume that k is a small R-module. Then the adjunction

D(Eop)
−⊗Ek // CellkD(R)

HomR(k,−)
oo

is an equivalence. The map ϕ is the counit of the adjunction, so it follows that all k-cellular
R-modules are effectively constructible.

Proof. To construct the adunction using the language of enriched functors, start with the enriched
adjunction

HomS(X ⊗S k,M) ∼= HomS(X,HomS(k,M))

coming from the fact that ModS is closed symmetric monoidal under −⊗S − and HomS(−,−). If
we apply HomS(−,M) to the coequalizer description of the smash product over E

X ⊗S E ⊗S k //// X ⊗S k // X ⊗E k,

and use the adjunction, we get the equalizer description of HomEop

HomS(X ⊗ E ,Hom(k,M)) HomS(X,Hom(k,M))oo oo HomEop(X,HomS(k,M))oo

Similarly, the equalizer description of HomR(−,−) transforms under the adjunction, so that we
have an enriched adjunction

HomR(X ⊗E k,M) ∼= HomEop(X,HomR(k,M)).

After passage to derived functors and homotopy categories, we aim to show that the adjunction
induces an equivalence between Eop-modules and the full subcategory of k-cellular R-modules. The
morphism HomR(k, ϕ) fits into the following commutative diagram, where the equivalences are
given by the dualizability of the small R-module k.

HomR(k,R)⊗R HomR(k,M)⊗E k
∼=swap

��

' // HomR(k,HomR(k,M)⊗E k)

HomR(k,ϕ)

vv

HomR(k,M)⊗E HomR(k,R)⊗R k

'
��

HomR(k,M)⊗E HomR(k, k)

∼=can

��
HomR(k,M)
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Thus ϕ is a k-equivalence of k-cellular R-modules, hence an equivalence. The unit η of the adjunc-
tion fits into the commutative diagram

X ⊗E HomR(k,R)⊗R k
' //

∼=swap

��

X ⊗E HomR(k, k)

∼=can

��
HomR(k,R)⊗R X ⊗E k

'
��

X

ηtt
HomR(k,X ⊗E k)

where the equivalences use the dualizability of k. Thus η is an equivalence as well. �

2. DC-completeness

We fix an S-algebra k (often commutative, but we need not assume so yet). Let R −→ k be a
map of S-algebras. In most of our examples, R is an augmented k-algebra, i.e. a k-algebra equipped
with a map of k-algebras R −→ k. We make the following definitions:

• R −→ k is small if k is finitely built from R as an R-module (recall Lemma 1.2).
• R −→ k is cosmall if R is finitely built from k as an R-module.
• R −→ k is proxy-small if there exists an R-module K such that

– K is finitely built from R,
– K is finitely built from k, and
– k is built from K

in the category of R-modules. We then call K a Koszul complex for k over R.

Remark 2.1. small =⇒ proxy-small (K = k), and
cosmall =⇒ proxy-small (K = R).

Example 2.2. Let R be a commutative Noetherian discrete ring, let I be the ideal of R generated
by α1, . . . , αn, and let k = R/I be the quotient ring. Assume that k is a regular ring(= every finitely
generated k-module admits a finite length resolution by finitely generated projective k-modules,
i.e. is finitely built). We recall the classical Koszul complex and show that it witnesses the fact
that R −→ k is proxy-small.

Let K(αi) be the two term chain complex

K(αi) : R
αi−→ R

with R in degrees 0 and 1, respectively. Let K = K(α1)⊗R · · · ⊗RK(αn) be the tensor product of
chain complexes. In degree p, the chain complex K is the p-fold alternating product Kp =

∧pRn

and, in terms of the usual basis for alternating products, the differential is given by

d(ei0 ∧ · · · ∧ eip) =

p∑
k=0

(−1)kαikei0 ∧ · · · ∧ êik ∧ · · · ∧ eip .

Appropriate modifications should be made in characteristic two. From this description it is clear
that K is finitely built from R.

If α1, . . . , αn is a regular sequence, then K is a resolution of k. This is not true in general, but
we will show that K is finitely built from k. First, I claim that for any n-tuple r = (r1, . . . , rn),
multiplication by v =

∑
riαi is nullhomotopic. To construct an explicit chain nullhomotopy, define

H : K∗ −→ K∗+1 by H(x) = r ∧ x, where we consider r ∈ Rn ∼= K1 to be a degree one element of
the exterior algebra on Rn. By the Leibniz rule,

dH(x) = dr ∧ x− r ∧ dx =
∑

riαix−H(dx).
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Thus dHx+Hdx = vx, which proves the claim. It follows that in each degree, the homology HiK
is a finitely generate k = R/I-module, hence tiniely builtt from k. We now use the short exact
sequences coming from the Postnikov tower

0 −→ HiK −→ K〈−∞, i〉 −→ K〈−∞, i− 1〉 −→ 0

and induction to see that K = K〈−∞, n〉 is finitely built from k.
To verify that K is a Koszul complex for k, it remains to see that k is built from K. Every

R-module is built from R over R. In particular, k = R/I is built from R. Applying K ⊗R (−)
to the buliding procedure, we see that K ⊗R k is built from K over R. But after tensoring with
k = R/I, the differential on K is zero and the complex splits as a finite sum of shifted copies of k:

K ⊗R k ' ⊕finiteΣ
tk.

Using triangles to shed off copies of k, we conclude that k is built from K.

We will now introduce a duality functor which can be thought of as the linear dual of Koszul/bar
duality. Recall that we have fixed a map of S-algebras R −→ k. Let E = EndR(k) be the (derived)
endomorphism algebra of k as an R-module. The association R 7→ E defines a contravariant
endofunctor when restricted to the category of augmented k-algebras. The unit of R induces the
augmentation EndR(k) −→ Endk(k) = k of the endomorphism ring. Applying the same procedure

again gives the double centralizer R̂ = EndE(k) of R.

Definition 2.3. We say that (R, k) is DC-complete if the map induced from the R-module action
on k

R −→ EndE(k) = R̂

is an equivalence.

Remark 2.4. If R is DC-complete, then it follows that E is also DC-complete.

Notice that the endomorphism ring of R is naturally isomorphic to the k-linear dual of k ⊗R k:

E = HomR(k, k) ∼= HomR(k,Homk(k, k)) ∼= Hom(k ⊗R k, k).

The (derived) smash product k ⊗R k is canonically realized using the two-sided bar construction
B(k,R, k) on R. Thus the functor R 7−→ E is the contravariant dual of the bar duality functor
R 7−→ B(k,R, k). This functor is also popular in other contexts. For example making the same
definitions for operads instead of augmented k-algebras gives the notion of Koszul duality of operads.

Example 2.5. Let R be a commutative Noetherian ring, let I be an ideal of R with quotient

k = R/I a regular ring. We will now see that there is a natural equivalence R̂ ' limsR/I
s between

the double centralizer of R −→ k and the I-adic completion of R. Hence R is DC-complete if and
only if R is I-adically complete.

Let C be the class of R-modules X for which the natural map

X −→ HomE(HomR(X, k), k)

is an equivalence. Certainly k ∈ C. Since C is closed under triangles, retracts, and equivalences, we
see that

{R-modules finitely built from k} ⊂ C.
Since R is Noetherian, Is is a finitely generated R-module. Thus Is/Is+1 ∼= Is ⊗R R/I is a finitely
generated k-module, hence finitely built from k by regularity. Using the short exact sequence

0 −→ Is/Is+1 −→ R/Is+1 −→ R/Is −→ 0
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and induction, we conclude that R/Is+1 is finitely built from k, and so R/Is+1 ∈ C. We will now
apply a theorem of Grothendieck on local cohomology:

colim
s

ExtiR(R/Is, k) ∼=

{
k i = 0

0 i 6= 0

In our language, we can write this as:

hocolim
s

HomR(R/Is, k) ' k.

This equivalence and the fact that R/Is ∈ C give the desired chain of natural equivalences:

R̂ = HomE(k, k) ' HomE(hocolim
s

HomR(R/Is, k), k)

∼= holim
s

HomE(HomR(R/Is, k), k)

' holim
s

R/Is.

Example 2.6. As Justin explained during the seminar, it is instructive to work out the case
R = Z −→ Z/p = k of the previous example by hand. The derived endomorphism algebra

E = HomZ(Z/p,Z/p)

can be constructed by applying HomZ(−,Z/p) to the standard resolution

0 −→ Z
p−→ Z −→ Z/p −→ 0

of Z/p. The result in homology is the exterior algebra Λ = E(Z/p) on a copy of Z/p in degree one.
There is a spectral sequence

ExtH∗E(Z/p,Z/p) =⇒ H∗ ExtE(Z/p,Z/p)

whose target is the homology of the double centralizer EndE(Z/p). The tensor product Λ⊗Γ(Z/p)
of the exterior algebra with a divided power algebra on Z/p in degree −1 is a free resolution of Z/p
as a H∗E = Λ-module. Hence the E2 page of the spectral sequence is isomorphic to a polynomial
algebra on a copy of Z/p in homological degree 1 and internal degree 0:

HomΛ(Λ⊗ Γ(Z/p),Z/p) ∼= Hom(Γ(Z/p),Z/p) ∼= P (Z/p).

For degree reasons, the spectral sequence collapses, and so the associated graded ofH∗ ExtE(Z/p,Z/p)
is a copy of Z/p in each non-negative degree. As we know from the previous example, all of the
extensions are non-trivial and the double centralizer is the p-adic integers Z∧p .

Example 2.7. Let R −→ k be the map Sp −→ Z/p from the p-complete sphere spectrum to the
Eilenberg-MacLane spectrum of Z/p given by the first Postnikov section composed with reduction
modulo p. The homotopy of the derived endormorphism algebra E = EndSp(Z/p) is the Steen-
rod algebra π∗E = A. The double centralizer is the abutment of the Adams spectral sequence
constructed by taking an Adams resolution of Z/p

HomA(Z/p,Z/p) =⇒ π∗HomE(Z/p,Z/p).

The statement that the Adams spectral sequence converges to the homotopy of Sp can then be
interpreted as the fact that Sp −→ Z/p is DC-complete. Note that the failure of the Adams
spectral sequence to converge to the homotopy of the global sphere S means that S −→ Z/p is not
DC-complete.

Example 2.8. Let k be a commutative S-algebra. Let X be a pointed connected topological
space. Let R = C∗(ΩX) = Σ∞ΩX+ ⊗ k be the k-chains on the based loopspace ΩX, considered
as a k-algebra by choosing a model for ΩX as a monoid. Notice that C∗(ΩX) is augmented over
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k via the collapse map ΩX −→ ∗. Let C∗(X) = FS(Σ∞X+, k) be the k-chains on X. Notice that
C∗(X) is augmented over k via the inclusion of the basepoint of X.

Lemma 2.9. There is a natural equivalence E = EndC∗(ΩX)(k) ' C∗(X) of augmented k-alegbras.

Proof. The functor
Σ∞(−)+ ⊗ k : (Top,×) −→ (Modk,⊗k)

is strong symmetric monoidal, so there is a natural isomorphism of bar constructions

Σ∞(BΩX)+ ⊗ k ∼= B(k,C∗(ΩX), k)

The left side is equivalent to the k-chains C∗(X) on X and the right side is an explicit model for
the derived smash product k ⊗C∗(ΩX) k. Taking the k-linear dual, we find that

C∗(X) = HomS(C∗(X), k) ' HomS(k ⊗C∗(ΩX) k, k) ∼= HomC∗(ΩX)(k, k) = E .
�

It follows that we can compute the double centralizer of R = C∗(ΩX) using cochains C∗(X)
instead of E itself. We will now introduce conditions under which C∗(ΩX) is DC-complete.

Definition 2.10. We say that (X, k) is of Eilenberg-Moore type if

• k is a field,
• H∗(X; k) is finite type, and
• either π1X = 0 or k is characteristic p and π1X is a finite p-group.

Proposition 2.11. Assume that (X, k) is of Eilenberg-Moore type. Then C∗(ΩX) ' EndC∗(X)(k).
Consequently, both C∗(ΩX) and C∗(X) are DC-complete.

Proof. This can be interpreted in terms of the convergence of the Eilenberg-Moore spectral sequence.
By taking the k-linear dual, it suffices to prove that the Eilenberg-Moore map

k ⊗C∗(X) k −→ C∗(ΩX)

defined in terms of the homotopy pullback diagram

ΩX //

��

∗

��
∗ // X

is an equivalence. We will prove more generally that given a homotopy pullback diagram

P //

��

Y

��
Z // X

with (X, k) of Eilenberg-Moore type, the induced map

C∗(Y )⊗C∗(X) C
∗(Z) −→ C∗(P )

is an equivalence. �

Returning to the general framework of an augmented k-algebra R, we will consider how the
hypothesis that R is DC-complete relates smallness conditions on R and E .

Proposition 2.12. Assume that (R, k) is DC-complete.

(i) R −→ k is small if and only if E −→ k is cosmall.
(ii) R −→ k is proxy-small if and only if E −→ k is proxy-small.
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Proof. (i) Assume that k is finitely built from R as an R-module. Applying HomR(k,−), we see
that E = HomR(k, k) is finitely built from k = HomR(R, k) as an E-module. Conversely, if E
is finitely built from k, we apply HomE(−, k) and see that k = HomE(E , k) is finitely built from
R ' HomE(k, k) as an R-module.

(ii) Suppose that R −→ k is proxy-small with Koszul complex K. Let L = HomR(K, k). We will
show that L is a Koszul complex for k over E . By similar reasoning as in (i),

K is finitely built from R =⇒ L is finitely built from k

K is finitely built from k =⇒ L is finitely built from E

Using a result from last lecture we see that the composition map

ϕ : HomR(K, k)⊗HomR(K,K) K −→ k

is an equivalence of E-modules because K is a small R-module. By taking any cellular approx-
imation, K is built from EK = EndR(K) as an EK-module. Thus k ' L ⊗EK K is built from
L = L⊗EK EK as an E-module. Therefore L is a Koszul complex and E −→ k is proxy-small. The
converse follows from the same argument and the equivalence R ' EndE(k) as in (i). �

Example 2.13. Assume that (X, k) is of Eilenberg-Moore type, so that R = C∗(ΩX) and E '
C∗(X) are both DC-complete. We have logical equivalences:

C∗(ΩX)→ k small
Prop⇐⇒ C∗(X)→ k cosmall

(A)⇐⇒ H∗(X; k) finite dimensional

C∗(X)→ k small
Prop⇐⇒ C∗(ΩX)→ k cosmall

(B)⇐⇒ H∗(ΩX; k) finite dimensional

In fact, the equivalence (A) holds only under the hypothesis that k is a field. The implication (=⇒)
is obvious, and to prove the reverse implication we use the coPostnikov tower

· · · −→ E〈n,∞〉 −→ E〈n+ 1,∞〉 −→ · · ·

which furnishes a cofiber sequence of spectra

E〈n,∞〉 −→ E〈n+ 1,∞〉 −→ K(πnE , n).

(The existence of the coPostnikov tower uses that E is coconnective with π0E = H0(X; k) = k a field;
this is worked out carefully by hand in Dwyer-Greenlees-Iyengar Prop 3.3.) The Eilenberg-MacLane
spectrum is finitely built from K because πnE = H−n(X; k) is finite dimensional. Since the total
cohomology ring H∗(X; k) is finite dimensional, we may induct along such cofiber sequences and
conclude that E is finitely built from K.

The implication (B) is similar, but requires the full assumption that (X, k) is Eilenberg-Moore
type. Again, the implication (=⇒) is obvious. For the reverse implication, we use the Postnikov
tower (whose construction only uses that R = C∗(ΩX) is connective):

· · · −→ R〈−∞, n〉 −→ R〈−∞, n− 1〉 −→ · · ·

with associated fiber sequences

K(πnR,n) −→ R〈−∞, n〉 −→ R〈−∞, n− 1〉.

Under our hypotheses, there is a finite filtration of πnR by π0R = k[π1X]-modules
The Eilenberg-MacLane spectrum K(πnR,n) is finitely built from k as an R-module.
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3. Matlis lifts and Matlis duality

As before, let R −→ k be a map of S-algebras and set E = EndR(k).

Definition 3.1. Let N be a k-module. We say that an R-module I = IN is a Matlis lift of N if

(1) there is an equivalence of k-modules HomR(k, I) ' N , and
(2) I is effectively constructible from k, i.e. the natural map

eval : HomR(k, I)⊗E k −→ I
is an equivalence.

Given I satisfying condition (1), a k-cellular approximation CellkI also satisfies (1). So there is no
loss in generality in assuming that I is k-cellular. Instead of requiring this, we make impose the
stronger condition (2) since it will help enumerate Matlis lifts below.

Remark 3.2. The functor HomR(k,−) is the coinduction functor from R-modules to k-modules,
so from condition (1) we get a canonical equivalence

HomR(X, I) ' Homk(X,N)

for any R-module X. Notice that I is a lift of N to an R-module, but not in the obvious way along
the map R −→ k.

Remark 3.3. When N = k, then

HomR(X, I) ' Homk(X, k)

is a lift of the k-linear duality functor to the setting of R-modules.

Definition 3.4. A right E-module Ñ is of Matlis type if the coevaluation map

coeval : Ñ ∼= Ñ ⊗E HomR(k, k) −→ HomR(k, Ñ ⊗E k)

is an equivalence. If the underlying left k-module of Ñ along the right multiplication map kop −→ E
is equivalent to N , then we call Ñ an E-lift of N .

Proposition 3.5. There is a bijective correspondence of equivalence classes:

π0{Matlis lifts of N} ∼= π0{E-lifts of N of Matlis type }
I 7−→ HomR(k, I)

Ñ ⊗E k ←− [ Ñ

We will be most interested in the case N = k. To find a Matlis lift I of k, it suffices to

(1) define a compatible Eop-module structure on k, i.e. an E-lift k̃ of k, and then

(2) prove that k̃ is of Matlis type.

The resulting Matlis lift is then of the form I = k̃ ⊗E k. In this situation, we make the following
definition.

Definition 3.6. The Pontriagin dual or Matlis dual of an R-module M (with respect to I = Ik) is
defined to be HomR(M, I). Note that without further structure on R, for example commutativity,
this need not be an R-module!

We will now provide a series of propositions which enable us to recognize E-lifts of Matlis type
and thus Matlis lifts.

Proposition A. Suppose that R −→ k is small. Then any E-lift Ñ of N is of Matlis type.

Consequently, I = Ñ ⊗E k is a Matlis lift of N .
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Proof. By Theorem 1.8, the unit

coeval : Ñ −→ HomR(k, Ñ ⊗E k)

of the adjunction between Eop-modules and k-cellular R-modules is an equivalence. �

Proposition B. Let M be an R-module. Then the Eop-module HomR(k,M) is of Matlis type if
and only if

eval : HomR(k,M)⊗E k −→M

is a k-cellular approximation.

Notice that the domain of the map eval is the associated Matlis lift I. Also notice that the second
condition is equivalent to the statement that CellkM is effectively constructible.

Remark 3.7. Suppose that R is an augmented k-algebra with k commutative, and consider the

E-lift k̃ of k given by the augmentation. In some examples, we will already know that the E-lift k
is of Matlis type. The adjunction

HomR(k,Homk(R, k)) ∼= Homk(k ⊗R R, k) ∼= k

then shows that HomR(k,Homk(R, k)) is Matlis type. Applying Proposition B withM = Homk(R, k)
gives a k-cellular approximation

I = k̃ ⊗E k ' HomR(k,Homk(R, k))⊗E k −→ Homk(R, k),

so that I = Cellk Homk(R, k).

Corollary 3.8. If R −→ k is proxy-small, then Ñ is of Matlis type if and only if there exists an

R-module M such that Ñ ' HomR(k,M) as Eop-modules.

Proof. If Ñ is of Matlis type, then M = Ñ ⊗E k has the desired property. The converse follows
from the generalization of Theorem 1.8 to the proxy-small case (see DGI Theorem 4.10). �

Definition 3.9. An R-module X is of upward (finite) type if there exists an integer n such that X
can be built from 0 by attaching (finitely many) copies of ΣiR for each i ≥ n. An R-module X is
of downward (finite) type if there exists an integer n such that X can be built from 0 by attaching
(finitely many) copies of ΣiR for each i ≤ n.

The following lemma is useful to recognize when these conditions hold.

Lemma 3.10. (see DGI Prop 3.13 and Prop 3.14)

(i) If R is connective and X is bounded below, then X is upward type. If π0R is Noetherian
and each πiR, πiX is a finitely generated π0R-module, then X is upward finite type.

(ii) If R is coconnective, π0R is a field and X is bounded above, then X is downwarad type.
If in addition π−1R = 0 and πiR, πiX are each finitely generated over π0R, then X is of
downward finite type.

Proof. For (i), we inductively construct maps of R-modules Xn −→ X that is a πi-iso for i < n
and surjective on πn. For the inductive step, choose maps qΣnR −→ Xn generating the kernel of
πnXn −→ πnX. Let X ′n be the cofiber of this map. There is an induced map X ′n −→ X which
is now a πi-iso for i ≤ n. Next, choose maps Y = qΣn+1R −→ X generating πn+1X. Then the
induced map Y q X ′n −→ X has the required properties. Under the finiteness hypotheses, the
coproducts can all be chosen to be finite.

The proof of (ii) is in some sense Eckmann-Hilton dual to the proof just given. It proceeds using
a coPostnikov tower for X, which requires the assumptions on R. �

Again, we consider an E-lift Ñ of a k-module N and ask if it is of Matlis type.
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Proposition C. Suppose that k and Ñ are bounded above, that k is upward finite type as an

R-module and Ñ is downward type as an Eop-module. Then Ñ is of Matlis type.

Proposition D. Suppose that k and Ñ are bounded below, that k is downward finite type as an

R-module and Ñ is upward type as an Eop-module. Then Ñ is of Matlis type.

We will now discuss some examples of Matlis lifts and Matlis duality.

Example 3.11. Suppose that R −→ k is the unit map S −→ HFp (see also Example 2.7).
Then E = HomS(HFp, HFp) = HA is the spectrum representing the mod p Steenrod algebra,

i.e. πkE = A−k. The π0E = Fp-module structure on πkHFp is unique, so there exists a unique
Eop-module structure on k = HFp (given by the augmentation of the Steenrod algebra). This is
our E-lift. The conditions in Lemma 3.10.(i) are satisfied, so HFp is of upward finite type as an
S-module. We can also apply Lemma 3.10.(ii) to HFp as an Eop-module, so HFp is of downard
type as an Eop-module. Notice that π−1E 6= 0 because of the Bockstein operation, and that this
is the only condition for HFp to be of downard finite type that does not hold. We conclude by
Proposition C that HFp is of Matlis type, and so I = HFp⊗E HFp is a Matlis lift of HFp (in fact,
the unique Matlis lift).

We will now identify the resulting Matlis duality as the p-primary part of Brown-Comenetz
duality. Recall that the Brown-Comenetz dual of an S-module E is the S-module JE satisfying
the equation

JEk(X) = Hom(E∗(X),Q/Z).

In fact, we construct JE by observing that the right-hand side of this equation satisfies Brown
representability. Let J = JS be the Brown-Comenetz dual of the sphere spectrum. Then the
homotopy groups of J

πkJ = J−k(∗) = Hom(π−kS,Q/Z)

are the Pontrjagin duals of the satable stems (with the opposite degrees). Let Jp be the p-
localization of J . Then the homotopy groups of Jp

πkJp = Hom(π−kS,Z[1/p]/Z)

are the Pontrjagin duals of the p-primary stable stems. Observe that

J−kp (HFp) = Hom(πkHFp,Z[1/p]/Z) =

{
Fp k = 0

0 else

Therefore HomS(HFp, Jp) ' HFp, i.e. HFp is Brown-Comenetz self-dual. It follows that the
Eop-module = HomS(HFp, Jp) is of Matlis type, so by Proposition B,

eval : HomS(HFp, Jp)⊗E HFp −→ Jp

is a k-cellular approximation.
Now I claim that Jp is HFp-cellular, so that the map eval is in fact an equivalence. To see this,

write Jp as the homotopy colimit of its connective covers

Jp = hocolim
n

Jp〈−n,∞〉.

Each Jp〈−n,∞〉 has finitely many homotopy groups, each of which is a finite p-group, except for
Hom(Z,Z[1/p]/Z) = Z[1/p]/Z in degree 0. But all of these groups are built from Fp using short
exact sequences (and the colimit Z[1/p]/Z = colim Z/pn). We conclude that Jp is built from HFp.

We now have an equivalence

I = HFp ⊗E HFp ' HomS(HFp, Jp)⊗E HFp ' Jp
and so Matlis duality is p-primary Brown-Comenetz duality.
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Example 3.12. Let X be a pointed connected topological space. Let k be a field and suppose that
(X, k) is of Eilenberg-Moore type. Let R = C∗(X; k). Then E ' C∗(ΩX; k) by DC-completeness
(see Example 2.11). Then π0R = H0(X; k) = k and πiR is finite dimensional over k by the
assumption that X is finite type. Similarly, π0E = H0(ΩX; k) = k[π1X] is Noetherian since (X, k)
is of EM-type, and πiE and k are finitely generated k[π1X]-modules. We apply Lemma 3.10 and
conclude that k is upward finite type over Eop and that k is downard finite type over R. Hence
by Proposition D, I = k ⊗C∗(ΩX) k is a Matlis lift of k. Using the bar construction to model the
derived smash product, we find that

I ' CX(BΩX; k) ' C∗(X; k) = Homk(R, k).

The situation is as described in Remark 3.7, but I is in fact equivalent to Homk(R, k), not just a
k-cellular approximation of it.

Before beginning the next example, let us record:

Lemma 3.13. Suppose that X is a pointed connected finite complex, and that k is an S-algebra.
Let R = C∗(ΩX; k) so that E ' C∗(X; k). Then k is small as an R-module and cosmall as an
E-module. If we merely assume that X is finite type, then k is of upward finite type over R.

Proof. Let E be the total space of the universal principal ΩX-bundle over X. Then M = C∗(E; k) '
k and the action of R on M agrees with the augmentation action on k. Let Eq be the inverse image
in E of the q-skeleton of X, and let Mq = C∗(Eq; k). The inverse image of a q-cell e ⊂ X is a copy
of e× ΩX in E. Thus

Mq/Mq−1 '
⊕

q-cells in X

ΣqR.

Since X is finite dimensional, the filtration stabilizes and we see that k ' M = MdimX is finitely
built from R as an R-module. Applying HomR(−, k) to the construction process, we see that E is
finitely built from k as an E-module. If X is only finite type, then the filtration shows that k is of
upward finite type as an R-module. �

Example 3.14. As in the previous example, assume thatX is a pointed connected topological space
of finite type and that k is a field. We will not assume that (X, k) is EM-type. Let R = C∗(ΩX; k).
Then E ' C∗(X; k). The inclusion of the basepoint induces the augmentation E −→ k, and this
gives the unique E-lift of k. By the lemma, we see that k is of upward finite type as a C∗(ΩX)-
module. By Lemma 3.10.(ii), k is of downward type as an Eop-module. By Proposition C, we
conclude that I = k⊗C∗(X) k is the unique Matlis lift of k. Arguing as in Remark 3.7, we see that
I is the k-cellular approximation of the cochains on the based loop spaces:

I ' Cellk Homk(R, k) = CellkC
∗(ΩX; k)

This gives a conceptual interpretation of the target of the Eilenberg-Moore spectral sequence in
cases where classical convergence does not hold.

Example 3.15. Let X be a pointed finite complex, let k = S, and let R = C∗(ΩX; k) = Σ∞+ ΩX.
Then E ' C∗(X; k) = DX is the Spanier-Whitehead dual of X. The ring spectrum R is Wald-
hausen’s spherical group-ring of the based loopspace, and that the algebraic K-theory of R is the
A-theory of X. By Lemma 3.13, k = S is small as an R-module so by Proposition A, every E-lift of
S is of Matlis type. The augmentation E = DX −→ S gives the unique E-lift of S and we conclude
that I = S ⊗DX S is the unique Matlis lift of S. As in Remark 3.7, we have

I = S ⊗DX S ' HomS(Σ∞+ ΩX,S).

Suppose in addition that X is 1-connected. Realizing the derived smash product using the bar
construction and applying HomS(−, S) in each simplical degree, we see that the double centralizer
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is the cobar construction on Σ∞+ X, which is equivalent to Σ∞+ ΩX by a theorem of Bousfield:

EndE(S) ∼= Hom(S ⊗DX S, S) = Tot C∗(X,Σ∞+ X,S) ' Σ∞+ ΩX = R.

Therefore (Σ∞+ ΩX,S) is DC-complete when X is 1-connected.
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