Vector fields on spheres

John Lind

February 28, 2019




A vector field consists of a vector emanating from every point:
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A vector field determines a flow through space in the direction that
the vectors point.

Technical disclaimer: the vectors should vary continuously as we move around.
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Q: Can you put this vector field on a sphere?



The two-dimensional sphere S? is the set of points in 3-space
whose distance from the origin is one:

$?={(xy,2) ER* | +y2 +2° =1}




We can think of the two-dimensional sphere as the plane with an
extra point oo “in all directions at once”

S$? = R>U {0}
This is called stereographic projection. The formula is:
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The stereographic projection of the earth:
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When placed on the sphere, this vector field looks like:




Q: can you find a nonzero vector field on the sphere?



Q: can you find a nonzero vector field on the sphere?

A point p is a zero of a vector field F if F(p) = 0. We want to find
a vector field on S? without any zeroes.

The index of p is the number of times that the vector field make a
full rotation (in + or — direction) as we circumnavigate p.
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Q: can you find a nonzero vector field on the sphere?

A point p is a zero of a vector field F if F(p) = 0. We want to find
a vector field on S? without any zeroes.

The index of p is the number of times that the vector field makes a
full rotation (in + or — direction) as we circumnavigate p.
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The Euler characteristic of a shape M is the alternating sum

X(M) = #vertices — #edges + #faces.

Examples:




The Poincaré-Hopf Theorem (1881, 1926)

If a vector field F on M has isolated zeroes, then

x(M) = Z index(p).

F(p)=0

In other words, the Euler characteristic is equal to the sum of the
indices of all zero points for F.

Application: since x(S?) = 2, any vector field F on S must have
some zeroes, in order for the sum on the right to be 2.

There cannot be a nonzero vector field on the two-dimensional
sphere 5?1



There cannot be a nonzero vector field on the two-dimensional
sphere S%1
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A vector field with a single zero of index 2.



Q: Can you find a nonzero vector field on the torus?
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Q: Can you find a nonzero vector field on the torus?

How about the three-holed torus?



Q: Can you find a nonzero vector field on the torus?

How about the three-holed torus?

4,

No, x



Q: What about higher dimensional spheres?



Q: What about higher dimensional spheres?

Slow your roll. Let's start with lower dimensional spheres.
The one-dimensional sphere is the circle:

St={(xy) eR?|x*+y* =1}

There is a nonzero vector field on S* and x(S') = 0.



The three-dimensional sphere S3 is the set of points in 4-space
whose distance from the origin is one:

S3 ={(x1,x2,x3,x4) ER* | X2 + X3 +x3 + xZ =1}

We can think of S3 as three-space with an extra point co “in all
directions at once™
S3 = R3U {0}

What is a vector field on S3?



A vector field on S3



Theorem (Hurwitz, Radon, Eckmann <1950's; Adams 1962)

Let V(n) = number of linearly independent vector fields on the
n-dimensional sphere S™. Then,

V(n) =0 if nis even (we proved this for S).

If n is odd:
n|1 3 5 7 9 11 13 15 17 19 21 23
V()1 3 1 7 1 3 1 8 1 3 1 7

For n odd, let 2% be the largest power of 2 that divides n+ 1;
writing k = 4b + ¢ where 0 < ¢ < 3, the number of linearly
independent vector fields on S" is:

V(n) =8b+2°— 1.

The proof uses the dark arts of algebraic topology!



