Mathematics 311: Midterm Exam Solutions John Lind

1. (5 points) Find all solutions $z \in \mathbb{C}$ to the equation $e^{2z} - 2e^z + 2 = 0$.

Solution: Factor the left hand side as a quadratic expression in the entry e^z (if this seems like radically divine inspiration, notice that the quadratic formula leads to this choice of factorization)

$$0 = e^{2z} - 2e^z + 2 = (e^z - (1+i))(e^z - (1-i)).$$

Thus $e^z = 1 \pm i$, so $z = \log(1 \pm i)$. However, the complex logarithm is multiple-valued, so in order to find all solutions we need to express all of the values that $\log(1+i)$ and $\log(1-i)$ can take. Using the definition of the complex logarithm, this is:

$$z = \log(1+i) = \log|1+i| + i\arg(1+i)$$

$$= \log\sqrt{2} + \frac{\pi i}{4} + k \cdot 2\pi i, \quad \text{where } k \text{ runs through all integers}$$

and

$$z = \log(1 - i) = \text{Log}|1 - i| + i \arg(1 - i)$$
$$= \text{Log}\sqrt{2} - \frac{\pi i}{4} + k \cdot 2\pi i, \quad \text{where } k \text{ runs through all integers}$$

2. (5 points) Express $(i-1)^{2013}$ in the form a+bi where $a,b\in\mathbf{R}$.

Solution: It is very easy to answer this problem with

$$(i-1)^{2013} = (\sqrt{2})^{2013}\cos(2013 \cdot 3\pi/4) + i(\sqrt{2})^{2013}\sin(2013 \cdot 3\pi/4).$$

using the definition of complex exponentiation. I gave full credit for this response, because it technically answers the question, but I had a simpler form in mind. I should have asked you to find **integers** a and b!

The trick is to write i-1 in polar form before taking the exponent. Lo:

$$(i-1)^{2013} = (\sqrt{2} \cdot e^{\frac{3\pi i}{4}})^{2013} = 2^{2013/2} \cdot e^{\frac{2013 \cdot 3\pi i}{4}}$$

In the exponential, any multiple of 8 in the numerator will give an integer multiple of $2\pi i$, hence a factor of 1, so we only need to find the remainder of 2013 after dividing by 8. Long division shows that

$$2013 = 8 \cdot 251 + 5$$

so the exponent is:

$$\frac{2013 \cdot 3\pi i}{4} = \frac{(8 \cdot 251 + 5) \cdot 3\pi i}{4} = 2\pi i \cdot 251 \cdot 3 + \frac{15\pi i}{4}.$$

Returning to the original calculation and using the fact that $e^{2\pi i} = 1$, we have:

$$(i-1)^{2013} = 2^{2013/2} \cdot (e^{2\pi i})^{251 \cdot 3} \cdot e^{\frac{15\pi i}{4}} = 2^{1006} \cdot \sqrt{2} \cdot e^{\frac{15\pi i}{4}}.$$

The term $\sqrt{2} \cdot e^{\frac{15\pi i}{4}}$ is the polar form of 1-i, so this gives:

$$(i-1)^{2013} = 2^{1006}(1-i) = 2^{1006} - 2^{1006}i.$$

3. (5 points) Express the complex derivative f' of an analytic function f in terms of $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$, where v = Im f is the imaginary part of f.

Solution: Write f(z) = u(x, y) + iv(x, y) in terms of the real and imaginary components. The definition of the complex derivative at $z_0 = x_0 + iy_0$ is the limit

$$f'(z_0) = \lim_{w \to 0} \frac{f(z_0 + w) - f(z_0)}{w}.$$

Consider the limit for values of w = x + iy approaching 0 along the real axis, i.e. for y = 0:

$$f'(z_0) = \lim_{x \to 0} \frac{u(x_0 + x, y_0) + iv(x_0 + x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{x}$$

$$= \lim_{x \to 0} \frac{u(x_0 + x, y_0) - u(x_0, y_0)}{x} + i \lim_{x \to 0} \frac{v(x_0 + x, y_0) - v(x_0, y_0)}{x}$$

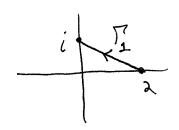
$$= \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

Notice that the final equality is simply the definition of the partial derivatives. The first Cauchy-Riemann equation is $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$. Making this substitution in the above expression, we find that

$$f' = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

gives the complex derivative f' in terms of the partial derivatives of the imaginary component v. (You can also correctly derive this equation by taking the limit as w approaches 0 along the imaginary axis, yielding the equation $f' = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$, then applying the other Cauchy Riemann equation $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.)

- 4. Compute the following contour integrals.
 - (a) (5 points) $\int_{\Gamma_1} \frac{1}{z} dz$, where Γ_1 is the contour:



Solution: The contour Γ_1 avoids the negative real axis, so in the domain of integration the function f(z) = 1/z has anti-derivative given by the principal branch of the logarithm $F(z) = \text{Log}_{-\pi} z$. By the fundamental theorem of calculus for line integrals, this gives:

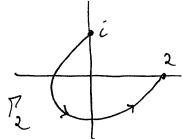
$$\int_{\Gamma_1} \frac{1}{z} dz = F(i) - F(2) = \text{Log}_{-\pi}(i) - \text{Log}_{-\pi}(2)$$

$$= \text{Log}|i| + i \text{Arg}_{-\pi}(i) - \text{Log}|2| - i \text{Arg}_{-\pi}(2)$$

$$= \text{Log} 1 + i \cdot \frac{\pi}{2} - \text{Log} 2 - i \cdot 0$$

$$= \frac{\pi i}{2} - \text{Log} 2$$

(b) (5 points) $\int_{\Gamma_2} \frac{1}{z} dz$, where Γ_2 is the contour:



Solution: The contour Γ_2 avoids the ray emanating from the origin at angle $\theta = \pi/4$, so in the domain of integration the function f(z) = 1/z has anti-derivative given by the branch of the logarithm $F(z) = \operatorname{Log}_{\pi/4} z$. By the fundamental theorem of calculus for line integrals, this gives:

$$\int_{\Gamma_2} \frac{1}{z} dz = F(2) - F(i) = \operatorname{Log}_{\pi/4}(2) - \operatorname{Log}_{\pi/4}(i)$$

$$= \operatorname{Log}|2| + i \operatorname{Arg}_{\pi/4}(2) - \operatorname{Log}|i| - i \operatorname{Arg}_{\pi/4}(i)$$

$$= \operatorname{Log} 2 + i \cdot 2\pi - \operatorname{Log} 1 - i \cdot \frac{\pi}{2}$$

$$= \operatorname{Log} 2 + \frac{3\pi i}{2}$$

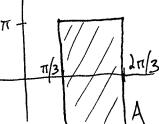
Notice that the closed loop $\Gamma_1 \boxplus \Gamma_2$ circles the origin once with positive orientation. Thus by Cauchy's theorem and the basic calculation for line integrals,

$$\int_{\Gamma_1} \frac{1}{z} dz + \int_{\Gamma_2} \frac{1}{z} dz = \int_{\Gamma_1 \boxplus \Gamma_2} \frac{1}{z} dz = 2\pi i.$$
 (1)

This calculation agrees with the two calculations above. In fact, an alternative solution is to compute either (a) or (b), then deduce the other calculation using equation (1).

- 5. Consider the complex function $f(z) = e^{iz}$.
 - (a) (5 points) Let A be the set of complex numbers z=x+iy satisfying the inequalities $\pi/3 \le x \le 2\pi/3$ and $y \le \pi$. Describe the image f(A) of the set A under the function f. It may be useful to draw pictures, but please give an explicit written answer to accompany any images.

Solution: Here is a picture of the set A.



Notice that the function $f(z) = e^{iz}$ is NOT the exponential function e^z . The function

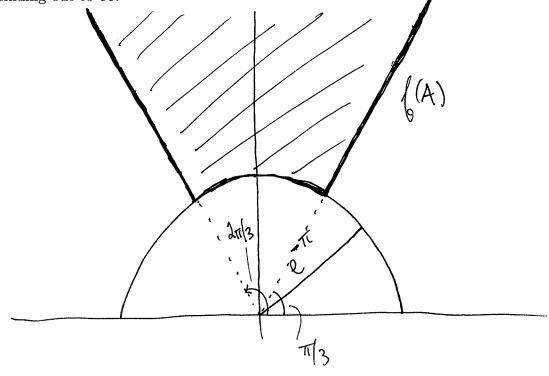
$$f(z) = f(x+iy) = e^{-y} \cdot e^{ix}$$

wraps the real axis onto the unit circle in the counter clockwise direction with period 2π and takes the horizontal line $y = y_0$ onto the circle centered at the origin of radius e^{-y_0} . Another way of thinking about f is that it takes the vertical line $x = x_0$ to the ray emanating from the origin at the angle x_0 .

As z = x + iy runs through the points in A, the output $f(z) = e^{-y} \cdot e^{ix} = r \cdot e^{i\theta}$ runs through points of distance $r \ge e^{-\pi}$ from the origin and at an angle θ between $\pi/3$ and $2\pi/3$. Thus f takes A to the set (expressed in polar coordinates):

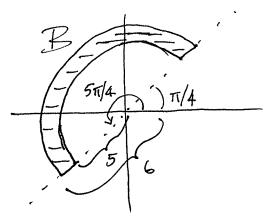
$$f(A) = \{ re^{i\theta} \mid r \ge e^{-\pi} \text{ and } \pi/3 \le \theta \le 2\pi/3 \}.$$

This is the sector bounded by the angles $\pi/3$ and $2\pi/3$, starting at radius $e^{-\pi}$ and continuing out to ∞ :



(b) (5 points) Consider the semi-annulus B described in polar coordinates as those points (r, θ) that satisfy $5 \le r \le 6$ and $\pi/4 \le \theta \le 5\pi/4$. Find a subset of the complex plane that is mapped by the function f onto B.

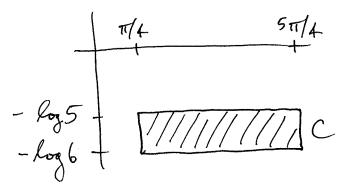
Solution: Here is a picture of the set B.



In order for $f(z) = e^{-y} \cdot e^{ix} = r \cdot e^{i\theta}$ to hit all of the points in B, we must have x and y values that achieve all values within the inequalities $5 \le e^{-y} \le 6$ and $\pi/4 \le x \le 5\pi/4$. Thus the set

$$C = \{x + iy \mid \pi/4 \le x \le 5\pi/4 \text{ and } -\operatorname{Log} 6 \le y \le -\operatorname{Log} 5\}$$

is sent onto the set B under the function f. The set C is the rectangle pictured below:



(Other possible solutions are the various translates of C by integer multiples of 2π in the real direction.)

- 6. (15 points) Consider the function $f(z) = \frac{4z^2 + 6iz 2}{z^3 z^2 + z 1}$.
 - (a) Determine the domain D of analyticity of f (i.e. the largest domain in the complex plane on which f(z) is an analytic function).

Solution: We may factor f and cancel the (z + i) terms from the numerator and denominator:

$$f(z) = \frac{4z^2 + 6iz - 2}{z^3 - z^2 + z - 1} = \frac{(z+i)(4z+2i)}{(z+i)(z-i)(z-1)} = \frac{4z+2i}{(z-i)(z-1)}.$$

The resulting rational function is in reduced form (there are no further cancellations), so its poles occur ar z=i,1. Thus the domain of analyticity is $D=\mathbf{C}-\{i,1\}$, the set of all complex numbers $z\neq i,1$.

(b) Write down the partial fraction decomposition of f(z).

Solution: We seek to write f(z) in the form

$$f(z) = \frac{4z + 2i}{(z - i)(z - 1)} = \frac{A}{z - i} + \frac{B}{z - 1}.$$

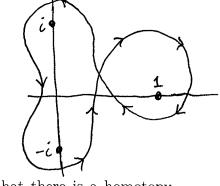
Combining the fractions on the right, we arrive at the equation

$$A(z-1) + B(z-i) = 4z + 2i.$$

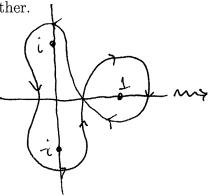
Solving for A and B, we find that A = 3 - 3i and B = 1 + 3i, so the partial fraction decomposition is:

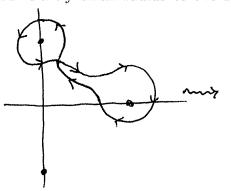
$$f(z) = \frac{3 - 3i}{z - i} + \frac{1 + 3i}{z - 1}.$$

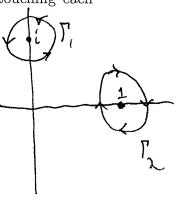
(c) Compute $\int_{\Gamma} f(z) dz$, where Γ is the contour:



Solution: Noting that f(z) is analytic at z = -i, we see that there is a homotopy within the domain of analyticity of f from the contour Γ to the contour $\Gamma_1 \boxplus \Gamma_2$, where Γ_1 is a positively oriented (CCW) circle around z = i and Γ_2 is a negatively oriented (CW) circle around z = 1, each of sufficiently small radius to avoid touching each other.







We may now compute the integral using Cauchy's integral theorem and the basic calculation for integrals around positively oriented circles γ .

$$\int_{\gamma} \frac{1}{z - a} dz = \begin{cases} 0 & \text{if } a \text{ lies outside of } \gamma \\ 2\pi i & \text{if } a \text{ lies inside of } \gamma \end{cases}$$

The calculation is:

$$\int_{\Gamma} f(z) dz = \int_{\Gamma_1} \left(\frac{3 - 3i}{z - i} + \frac{1 + 3i}{z - 1} \right) dz + \int_{\Gamma_2} \left(\frac{3 - 3i}{z - i} + \frac{1 + 3i}{z - 1} \right) dz$$

$$= (3 - 3i) \int_{\Gamma_1} \frac{1}{z - i} dz + (1 + 3i) \int_{\Gamma_1} \frac{1}{z - 1} dz$$

$$+ (3 - 3i) \int_{\Gamma_2} \frac{1}{z - i} dz + (1 + 3i) \int_{\Gamma_2} \frac{1}{z - 1} dz$$

$$= (3 - 3i) \cdot 2\pi i + (1 + 3i) \cdot 0 + (3 - 3i) \cdot 0 + (1 + 3i) \cdot (-2\pi i)$$

$$= 12\pi + 4\pi i$$

Notice that the second integral around Γ_2 contributes a minus sign because Γ_2 is negatively oriented.